K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

a: Đặt (d1): y=ax+b(a<>0)

Vì (d1) vuông góc với (d) nên 3a=-1

=>\(a=-\dfrac{1}{3}\)

Vậy: (d1): \(y=-\dfrac{1}{3}x+b\)

Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{3}x=-b\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\dfrac{x}{3}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3b\\y=0\end{matrix}\right.\)

=>A(3b;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{3}\cdot0+b=b\end{matrix}\right.\)

=>B(0;b)

\(AB=2\sqrt{10}\)

=>\(AB^2=40\)

=>\(\left(0-3b\right)^2+\left(b-0\right)^2=40\)

=>\(10b^2=40\)

=>\(b^2=4\)

=>b=2 hoặc b=-2

Vậy: (d1): y=-1/3x+2 hoặc (d1): y=-1/3x-2

b: Đặt (d2): y=ax+b

Vì (d2)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-5\end{matrix}\right.\)

Vậy: (d2): y=3x+b

Tọa độ C là:

\(\left\{{}\begin{matrix}y=0\\3x+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{b}{3}\end{matrix}\right.\)

=>\(C\left(-\dfrac{b}{3};0\right)\)

tọa độ D là:

\(\left\{{}\begin{matrix}x=0\\y=3x+b=3\cdot0+b=b\end{matrix}\right.\)

=>D(0;b)

\(OC=\sqrt{\left(-\dfrac{b}{3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{b}{3}\right)^2+0}=\dfrac{\left|b\right|}{3}\)

\(OD=\sqrt{\left(0-0\right)^2+\left(b-0\right)^2}=\sqrt{0^2+b^2}=\left|b\right|\)

Vì Ox\(\perp\)Oy nên OC\(\perp\)OD

=>ΔOCD vuông tại O

=>\(S_{OCD}=\dfrac{1}{2}\cdot OC\cdot OD\)

=>\(S_{OCD}=\dfrac{\dfrac{1}{2}\left|b\right|}{3}\cdot\left|b\right|=\dfrac{1}{2}\cdot\dfrac{b^2}{3}\)

Để \(S_{OCD}=6\) thì \(\dfrac{b^2}{6}=6\)

=>\(b^2=36\)

=>\(b=\pm6\)

Vậy: (d2): y=3x+6 hoặc (d2): y=3x-6

Để ΔOCD cân tại O thì OC=OD

=>\(\dfrac{\left|b\right|}{3}=\left|b\right|\)

=>\(\left|b\right|=0\)

=>b=0

Vậy: (d2): y=3x

Câu 2: 

Tọa độ điểm A là:

\(\left\{{}\begin{matrix}y=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}x=0\\y=2\cdot0+4=4\end{matrix}\right.\)

=>B(0;4)

Tọa độ điểm C là:

\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+1=0\end{matrix}\right.\Leftrightarrow C\left(2;0\right)\)

Tọa độ điểm D là:

\(\left\{{}\begin{matrix}x=0\\y=\dfrac{-1}{2}\cdot0+1=1\end{matrix}\right.\Leftrightarrow D\left(0;1\right)\)

Tọa độ điểm M là:

\(\left\{{}\begin{matrix}2x+4=-\dfrac{1}{2}x+1\\y=2x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,2\\y=1,6\end{matrix}\right.\)

M(-1,2;1,6); A(-2;0); B(0,4); C(2;0); D(0;1)

\(\overrightarrow{MA}=\left(-0.8;-1.6\right)\)

\(\overrightarrow{MC}=\left(3.2;-1.6\right)\)

Vì \(\overrightarrow{MA}\cdot\overrightarrow{MC}=0\)

nên ΔMAC vuông tại M

b: \(MA=\sqrt{\left(-0.8\right)^2+\left(-1.6\right)^2}=\dfrac{4}{5}\sqrt{5}\)

\(MC=\sqrt{3.2^2+1.6^2}=\dfrac{8}{5}\sqrt{5}\)

\(S_{MAC}=\dfrac{4}{5}\sqrt{5}\cdot\dfrac{8}{5}\sqrt{5}:2=3.2\)

 

8 tháng 2 2020

Đường thẳng đoạn chắn qua M (3,1) có pt và a+3b min
a+3b=12, b= a/3 
a=6, b=2
Đường thẳng d cắt trục hoành tai điểm A(6,0), B(0,2)

??
 

Giả sử \(A\left(\frac{1}{a},0\right),B\left(0,\frac{1}{b}\right)\). Phương trình đường thẳng d cần tìm có dạng: \(ax+by=1\)

Vì  \(M\left(3,1\right)\in d\)nên \(3a+b=1\)

Ta có : \(OA+3OB=\left|\frac{1}{a}\right|+\left|\frac{3}{b}\right|\ge\left|\frac{1}{a}+\frac{3}{b}\right|=\left|\frac{3a+b}{a}+\frac{3\left(3a+b\right)}{b}\right|=\left|6+\frac{b}{a}+\frac{9a}{b}\right|\)

Áp dụng bất đẳng thức AM-GM ta có : \(\frac{b}{a}+\frac{9a}{b}\ge2\sqrt{\frac{9ab}{ab}}=6\)

\(\Rightarrow OA+3OB\ge\left|6+6\right|=12\)

Dấu "=" xảy ra khi: \(a=\frac{1}{6},b=\frac{1}{2}\)

15 tháng 9 2023

Đường thẳng d cắt trục \(Ox\) tại \(C\left(0;a\right)\) và cắt trục \(Oy\) tại \(D\left(b;0\right)\) \(\left(a;b>0\right)\)

Để \(\Delta OCD\) cân tại \(O\) \(\Rightarrow OC=OD\)

mà \(\left\{{}\begin{matrix}OC=\sqrt[]{a^2}=a\\OD=b^2=b\end{matrix}\right.\left(a;b>0\right)\)

\(\Rightarrow a=b\)

Phương trình đường thẳng d có dạng 

\(\dfrac{x}{a}+\dfrac{y}{b}=1\)

\(\Leftrightarrow\dfrac{x}{a}+\dfrac{y}{a}=1\)

\(\Leftrightarrow x+y-a=0\)

mà \(\left(d\right)\) qua điểm \(A\left(1;2\right)\)

\(\Rightarrow1+2-a=0\)

\(\Leftrightarrow a=3\)

Vậy phương trình đường thẳng \(\left(d\right):x+y-3=0\)

16 tháng 9 2023

Đính chính

\(...OD=b^2=b\rightarrow OD=\sqrt[]{b^2}=b\)