Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O M H K m n a b x y
Kẻ MH; MK lần lượt vuông góc với Ox; Oy. Đặt MH = b; MK = a; HA = m; KB = n
+) Tam giác BKM đồng dạng với tam giác MHA (g- g) => BK / KM = MH / HA => n/a = b/ m => ab = m.n
a) S(AOB) = OA.OB/ 2
Ta có: OA = a + m ; OB = b + n
=> OA. OB = (a + m).(b + n) = ab + an + bm + mn = (ab + mn) + (an + bm)
= 2ab + (an + bm) \(\ge\) 2ab + \(2\sqrt{an.bm}\) = 2ab + \(2\sqrt{\left(ab\right)^2}\) = 4ab = hằng số ( M cố định nên a.b = MK.MH không đổi)
Dấu "=" xảy ra <=> an = bm => (an)2 = an.bm = (ab).(mn) = (mn)2 => a = m => H là trung điểm của OA
Vậy S(AOB) nhỏ nhất bằng 4ab khi H là trung điểm của OA
=> Vị trí đường thẳng d: d đi qua M và A, trong đó: A thuộc Ox sao cho H là trung điểm của OA
b) OA + OB = a + m + b + n = (a+ b) + (m + n) \(\ge\) a+ b + \(2\sqrt{mn}\) = a+ b + \(2\sqrt{ab}\) = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) (vì m.n = ab)
Dấu "=" xảy ra <=> m = n => ab = n2
vậy OA + OB nhỏ nhất bằng \(\left(\sqrt{a}+\sqrt{b}\right)^2\) khi n2 = ab
+) Xác định vị trí của d sao cho n2 = ab = KB2
A B O M H K m n a b x y a P D
Cách dựng:
- Dựng đường tròn đường kính OK
- Trên đoạn OK , dựng KD = a. Qua D kẻ đường vuông góc với OK cắt đường tròn đường kính OK tại P
- Dựng đường tròn tâm K , bán kính KP cắt Oy tại B
- Đường thẳng đi qua B và M chính là đường thẳng d cần xác định
Chứng minh: Áp dụng hệ thức lượng trong tam giác vuông OPK có: KP2 = KD. KO = a.b
Mà KP = KB = n => n2 = ab
Vậy....
+ Xét tam giác bất kì ABC có Bvà C lần lượt nằm trong hai tia Ox và Oy
+ Gọi A' và A'' là các điểm đối xứng với điểm A lần lượt qua các đường thẳng Ox và Oy .
Ta có \(AB=A'B\) và \(AC=A'CC\)( do các tam giác \(ABA'\)và tam giác \(ACA''\)là tam giác cân).
+ Gọi 2p là chu vi của tam giác ABC thì có :
2p = \(AB+BC+CA=A'B+BC+CA''\ge A'A''\)
Dấu'' bằng '' xảy ra khi 4 điểm \(A'B,C,A''\)thẳng hàng .
Nên để chu vi tam giác ABC bé nhất thì phải lấy B và lần lượt là giao điểm của đoạn thẳng \(A'A''\)với hai tia Ox và Oy ( các giao điểm đó tồn tại vì góc xOy nhọn )
Chúc bạn học tốt !!!
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C