Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a< b< c< d< m< n\Rightarrow a+b+c< d+m+n\)
\(\Leftrightarrow2a+2b+2c< a+b+c+d+m+n\)
\(\Leftrightarrow2\left(a+b+c\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{2\left(a+b+c\right)}{a+b+c+d+m+n}< \frac{a+b+c+d+m+n}{a+b+c+d+m+n}=1\)
\(\Rightarrow\frac{a+b+c}{a+b+c+d+m+n}< \frac{1}{2}\)(đpcm)
a < b => 2a < a + b ; c < d => 2c < c + d ; m < n => 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\)
Gọi biểu thức cần so sánh là A
Nếu a< b thì \(\frac{a}{b+m}< \frac{a}{b}< \frac{a+m}{b+m}\)
=> \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
=> cộng các vế trái với nhau, vế giữa với nhau, vế phải với nhau, dâu < giữ nguyên, trong đó vế trái cộng lại rút gọn được 1, vế giữa là A, vế phải cộng lại rút gọn được 2, ra điều phải cm
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\left(vì\frac{a}{a+b+c}< 1\right)\)
tương tự
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
\(\Rightarrow\)\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
từ (1) và (2) => đpcm
a) vì a<b => 2a<a + b ; c < d => 2c < c + d ; m<n => 2m< m + n
=> 2a + 2c + 2m = 2 (a + c + m) < ( a + b + c + m + n)
=> \(\frac{a+c+m}{a+b+c+m+n}< \frac{1}{2}\left(đccm\right)\)
t i c k nha!! 4545654756678769780
Ta có:\(1\le a;2\le b;3\le c;4\le d;5\le m;6\le n\)
\(\Rightarrow\hept{\begin{cases}a+c+m\ge1+3+5=9\\a+b+c+m+n=1+2+3+5+6=17\end{cases}}\)
\(\Rightarrow\frac{a+c+m}{a+b+c+m+n}\ge\frac{9}{17}>\frac{9}{18}=\frac{1}{2}\)
b,Tương tự
CM bài toán \(\frac{a}{b}< \frac{a+m}{b+m}\left(b>a\right)\)
a<b
\(\Rightarrow\)am<bm
\(\Rightarrow\) am+ab<bm+ab
\(\Rightarrow\) a.(b+m)<b(m+a)
\(\Rightarrow\) \(\frac{a}{b}< \frac{a+m}{b+m}\)
đpcm
áp dụng vào M
\(\Rightarrow\) M<2 (1)
tách 1 thành \(\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)
so sánh từng số hạng của M và 1
\(\Rightarrow\) M>1 (2)
từ (1) và (2)
\(\Rightarrow\) 1<M<2
đpcm
mọi người thấy đúng thì tk nha
Ta có :
\(A=|x|-|x-2|\le|x-x+2|\)
Dấu " = " xảy ra khi \(\hept{\begin{cases}x\ge0\\x-2\ge0\end{cases}\Rightarrow x\ge2}\)