Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
a < b \(\Rightarrow\) 2a < a + b
b < d \(\Rightarrow\) 2b < c + d
m < n \(\Rightarrow\) 2m < m + n
\(\Rightarrow\) 2a + 2b + 2m = 2 ( a + b + m ) < ( a + b + c + d + m + n ) . Do đó
a + b + m/a + b + c + d + m + n < 1/2 \(\Rightarrow\) ( đpcm )
Ta có:
2(a+c+m )=a+a+c+c+m+m<a+b+c+d+m+n
=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\)
\(\Leftrightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Theo giải thiết đề bài ta có : : \(a< b< c< d< m< n\Rightarrow2a< a+b;2c< c+d;2m< m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< \frac{\frac{a+b+c+d+m+n}{2}}{a+b+c+d+m+n}=\frac{1}{2}\)
Vậy \(\frac{a+c+m}{a+c+d+m+n}< \frac{1}{2}\) (đpcm)
a < b => 2a < a + b ; c < d => 2c < c +d ; m < n =>2m < m + n
Suy ra 2a + 2c + 2m = 2.(a+c+m) < a + b + c + d + m + n. Do đó :
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{1}{2}\) (đpcm)
\(\frac{a+c+m}{a+b+c+d+m+n}<\frac{a+c+m}{6a}\)
\(\frac{a+c+m}{6a}<\frac{3n}{6a}\)
=> \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{3n}{6a}=\frac{1}{2}.\frac{n}{a}=\frac{1}{2}:\frac{a}{n}\)
Vì a>n nên a/n > 1 => 1/2 : a/n <1/2
Vậy \(\frac{a+c+m}{a+b+c+d+m+n}<\frac{3n}{6a}<\frac{1}{2}\)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Ta có : \(a< b< c< d< m< n\Rightarrow a+b+c< d+m+n\)
\(\Leftrightarrow2a+2b+2c< a+b+c+d+m+n\)
\(\Leftrightarrow2\left(a+b+c\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{2\left(a+b+c\right)}{a+b+c+d+m+n}< \frac{a+b+c+d+m+n}{a+b+c+d+m+n}=1\)
\(\Rightarrow\frac{a+b+c}{a+b+c+d+m+n}< \frac{1}{2}\)(đpcm)