Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2(a+c+m )=a+a+c+c+m+m<a+b+c+d+m+n
=> \(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< 1\)
\(\Leftrightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)
Theo giải thiết đề bài ta có : : \(a< b< c< d< m< n\Rightarrow2a< a+b;2c< c+d;2m< m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{2\left(a+c+m\right)}{a+b+c+d+m+n}< \frac{\frac{a+b+c+d+m+n}{2}}{a+b+c+d+m+n}=\frac{1}{2}\)
Vậy \(\frac{a+c+m}{a+c+d+m+n}< \frac{1}{2}\) (đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2 × (a + c + m) < a + b + c + d + m + n
=> a + c + m / a + b + c + d + m + n < 1/2 ( đpcm)
a < b => 2a < a + b ; c < d => 2c < c + d ; m < n => 2m < m + n
Suy ra 2a + 2c + 2m = 2(a + c + m) < a + b + c + d + m + n. Do đó
\(\frac{a+c+m}{a+b+c+d+m+n}
Do a<b<c<d<m<n
=>a+c+m<b+d+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}
a<b=>2a<a+b
c<d=>2c<c+d
m<n=>2m<m+n
=>2(a+c+m)<a+b+c+d+m+n
=>\(\frac{2\left(a+c+m\right)}{a+b+c+d+m+n}
Do a < b < c < d < m < n
=> a + c + m < b + d + n
=> 2.(a + c + m) < a + b + c + d + m + n
=> \(\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\) (đpcm)
\(\hept{\begin{cases}a< b\Rightarrow2a< a+b\\c< d\Rightarrow2c< c+d\\m< n\Rightarrow2m< m+n\end{cases}}\)
\(\Rightarrow2\left(a+c+m\right)< a+b+c+d+m+n\)
\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\left(đpcm\right)\)
Vì a < b
c < d
m < n
=> b + d + m > a + c + m
=> a + b + c + d + m + n > 2. ( a + c + m )
=> \(\frac{a+c+m}{a+b+c+d+m+n}\) < \(\frac{a+c+m}{2.\left(a+c+m\right)}\)
=> \(\frac{a+c+m}{a+b+c+d+m+n}\)< \(\frac{1}{2}\)