\(\hept{\begin{cases}3x+my=5\\mx-y=1\end{cases}}\)

CM hệ có nghi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Để hệ có nghiệm duy nhất thì: \(\frac{3}{m}\ne\frac{m}{-1}\) 

\(\Leftrightarrow m^2\ne-3\)(1)

Vì (1) luôn đúng với mọi m

=> Hệ luôn có nghiệm duy nhất

=.= hk tốt!!

4 tháng 5 2019

bạn có thể biến đổi sao nó ra nhưu v k? rút y? thay vào pt (1).. ? Mình hơi lan man phần này á @@ bạn giúp mình với

11 tháng 1 2018

toi khong biet ma cac cau thay anh nen kieu nao vay 

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

3 tháng 6 2018

Hệ phương trình: \(\hept{\begin{cases}-2mx+y=5\\mx+3y=1\end{cases}}\)

Với \(m\ne0\)hệ phương trình có 2 nghiệm riêng biệt là \(x=-\frac{2}{m};y=1\)

Để hệ phương trình có nghiệm duy nyaats thỏa mãn x - y = 2 thì 

\(-\frac{2}{m}-1=2\Rightarrow-\frac{2}{m}=1+2=3\)

\(\Rightarrow3m=-2.1\Rightarrow m=-\frac{2}{3}\left(TMĐKx\ne0\right)\)

Vậy ...........................

3 tháng 6 2018

ai giúp mik tl đi

27 tháng 4 2020

Hệ phương trình có nghiệm duy nhất khi \(\frac{3}{m}\ne\frac{m}{-1}\)

\(\Leftrightarrow m^2\ne-3\forall m\)

Vậy hpt luôn có nguyên duy nhất với mọi m

27 tháng 4 2020

bảo ngọc đàm đg

30 tháng 3 2020

\(\hept{\begin{cases}x-my=1\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}mx-m^2y=m\\mx+y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x-my=1\\\left(1+m^2\right)y=1-m\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+my\\y=\frac{1-m}{m^2+1}\end{cases}}\)

<=> \(\hept{\begin{cases}x=1+m.\frac{1-m}{m^2+1}=\frac{1+m}{m^2+1}\\y=\frac{1-m}{m^2+1}\end{cases}}\)

Vậy với mọi m hệ luôn có nghiệm duy nhất.