\(\hept{\begin{cases}x+y=1\\mx-y=m+2\end{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

ai tl ho vs @@

7 tháng 1 2022

\(\hept{mx+y=3m-1x+my=m+1}\hept{\begin{cases}y=3m-1-mx\\x+m\left(3m-1-mx\right)=m+1y\end{cases}}\)

\(\left(1\right)\hept{\begin{cases}x+3m^2-m-m^2+x=m+1\\x\left(1-m^2\right)=-3m^2+2m+1\\\left(m-1\right)\left(m+1\right).x=\left(3m-1\right)\left(m-1\right)\end{cases}}\)

\(TH_1\): Để hệ có một nghiệm duy nhất ta có :

- m -1 khác 0

- m + 1 khác 0

\(x=\frac{3m-1}{m+1}\)

\(TH_2\): Để hệ có vô  nghiệm thì

\(\hept{\begin{cases}m-1=0\\m-1\end{cases}}\)

\(TH_3:\)Để hệ có vô số nghiệm thì :

\(\hept{\begin{cases}m+1=0\\m-1=0\end{cases}}\)

7 tháng 1 2022

rep it me

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

20 tháng 8 2021

b, \(\hept{\begin{cases}x^2+y^2=1\\x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=1\\y=x-m\end{cases}}\)

\(\left(1\right)\Rightarrow\left(x+x-m\right)^2-2x\left(x-m\right)=1\)

\(\Leftrightarrow\left(2x-m\right)^2-2x\left(x-m\right)=1\Leftrightarrow4x^2-4xm+m^2-2x^2+2xm=1\)

\(\Leftrightarrow2x^2-2mx+m^2-1=0\)

Để hệ pt có nghiệm khi \(\Delta\ge0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-1\right).2=4m^2-8m^2+8=-4m^2+8\ge0\)

\(\Leftrightarrow-\sqrt{2}\le m\le\sqrt{2}\)