\(\hept{\begin{cases}mx+2y=m...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

\(\hept{\begin{cases}mx+2y=m+1\\2x+my=2m-1\end{cases}}\)

<=> \(\hept{\begin{cases}mx+2y=m+1\\x=\frac{2m-my-1}{2}\end{cases}}\)Thay phương trình dưới vào PT trên được: \(m.\frac{2m-my-1}{2}+2y=m-1\) 

<=> 4y+m(2m-my-1)=2(m-1)

<=> 4y+2m2-m2y-m-2m+2=0

<=> (4-m2).y+2m2-3m+2=0

<=> \(y=\frac{2m^2-3m+2}{m^2-4}=\frac{2m^2-8-3m+10}{m^2-4}=2-\frac{3m-10}{\left(m-2\right)\left(m+2\right)}=2-\frac{3m-6-4}{\left(m-2\right)\left(m+2\right)}\)

=> \(y=2-\frac{3}{m+2}+\frac{4}{m^2-4}\)

Như vậy, để y nguyên thì \(\hept{\begin{cases}3⋮m+2\\4⋮\left(m^2-4\right)\end{cases}}\)

<=> \(\hept{\begin{cases}m+2=-3;-1;1;3\\m^2-4=-4;-2;-1;1;2;4\end{cases}}\)=> \(\hept{\begin{cases}m=-5;-3;-1;1\\m=0;\sqrt{2};\sqrt{3};\sqrt{5};\sqrt{6};\sqrt{8}\end{cases}}\)

Như vậy, không có giá trị nào của m thỏa mãn

15 tháng 5 2017

Giải sai rồi b. Thử thế m = 1 vô xem sao nhé. Tìm được x = 0,y = 1 đấy.

5 tháng 4 2019

Để pt trên có nghiệm duy nhất thì ĐK là:

\(\frac{1}{m}\ne\frac{m}{-2}\)

\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)

chắc vậy

5 tháng 4 2019

là sao Nguyenx công tỉnh

chả hiểu

cái này ko giải hẹ à

a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)

=> HPT vô nghiệm

b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )

HPT vô nghiệm

<=> ( * ) vô nghiệm

\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)

<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2 

<=> m = -1

24 tháng 3 2020

\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)

\(\left(2\right)\Rightarrow y=-m^2+2+mx\)

Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)

\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)

\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)

\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)

Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" <=> \(m=\frac{3}{2}\)

Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất