Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+2y=m+1\\2x+my=2m-1\end{cases}}\)
<=> \(\hept{\begin{cases}mx+2y=m+1\\x=\frac{2m-my-1}{2}\end{cases}}\)Thay phương trình dưới vào PT trên được: \(m.\frac{2m-my-1}{2}+2y=m-1\)
<=> 4y+m(2m-my-1)=2(m-1)
<=> 4y+2m2-m2y-m-2m+2=0
<=> (4-m2).y+2m2-3m+2=0
<=> \(y=\frac{2m^2-3m+2}{m^2-4}=\frac{2m^2-8-3m+10}{m^2-4}=2-\frac{3m-10}{\left(m-2\right)\left(m+2\right)}=2-\frac{3m-6-4}{\left(m-2\right)\left(m+2\right)}\)
=> \(y=2-\frac{3}{m+2}+\frac{4}{m^2-4}\)
Như vậy, để y nguyên thì \(\hept{\begin{cases}3⋮m+2\\4⋮\left(m^2-4\right)\end{cases}}\)
<=> \(\hept{\begin{cases}m+2=-3;-1;1;3\\m^2-4=-4;-2;-1;1;2;4\end{cases}}\)=> \(\hept{\begin{cases}m=-5;-3;-1;1\\m=0;\sqrt{2};\sqrt{3};\sqrt{5};\sqrt{6};\sqrt{8}\end{cases}}\)
Như vậy, không có giá trị nào của m thỏa mãn
Giải sai rồi b. Thử thế m = 1 vô xem sao nhé. Tìm được x = 0,y = 1 đấy.
Để pt trên có nghiệm duy nhất thì ĐK là:
\(\frac{1}{m}\ne\frac{m}{-2}\)
\(\Leftrightarrow m^2\ne-2\left(luondung\right)\)
chắc vậy
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1
\(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\mx-y=m^2-2\left(2\right)\end{cases}}\)
\(\left(2\right)\Rightarrow y=-m^2+2+mx\)
Thay (1) => \(\left(m+1\right)x+m\left(-m^2+2+mx\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)x-m^3+1=0\)
\(\Leftrightarrow x=\frac{m^3-1}{m^2+m+1}=m-1\)
\(\Rightarrow y=-m^2+2+m\left(m-1\right)=-m^2+2+m^2-m=2-m\)
Ta có: (m-1)(2-m)=-m2+3m-2=\(-\left(m-\frac{3}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu "=" <=> \(m=\frac{3}{2}\)
Vậy \(m=\frac{3}{2}\)hpt có nghiệm duy nhất