Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Bài 1:
a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)
AC=21-9=12(cm)
=>BC=15(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)
hay BH=5,4(cm)
=>CH=9,6(cm)
A B C D M
Ta có : \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
\(\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)
Đồng thời : \(\widehat{AMB}+\widehat{ABM}=90^0\)
\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)
Xét \(\Delta ABM\)VÀ \(\Delta DMC\)có :
\(\widehat{MAB}=\widehat{MDC}=90^0\)
\(\widehat{ABM}=\widehat{DMC}\)
Do đó \(\Delta ABM\)đồng dạng \(\Delta DMC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AM}=\frac{MD}{DC}\Rightarrow AB.DC=MD.AM\)
Mà \(AM=MD\) , nên : \(AB.DC=AM.AM\left(đpcm\right)\)
b ) Vì \(\Delta ABM\)đồng dạng \(\Delta DMC\)nên :
\(\frac{BM}{MC}=\frac{AB}{MD}\)hay \(\frac{BM}{MC}=\frac{AB}{AM}\)
Đồng thời : \(\widehat{MAB}=\widehat{MDC}=90^0\)
Do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
Chúc bạn học tốt !!!