Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)
Cậu tự kẻ hình nhé
a) Xét ΔABM và ΔDMC có: Góc A = góc D = 90o ; \(\dfrac{AB}{AM} = \dfrac{MD}{DC} = \dfrac{3}{4}\)
=> ΔABM đồng dạng với ΔDMC (c.g.c)
b) Có: ΔABM là Δ vuông tại A=> góc ABM + góc AMB =90o (1)
Lại có góc DMC = góc ABM (ΔABM ĐD ΔDMC) (2)
Từ (1) và (2): góc DMC + góc AMB = 90o
=> góc BMC = 180o - (góc DMC + góc AMB) = 180o - 90o = 90o
Vậy ΔBMC vuông tại M
Vì Am = 8 cm nên MD = 20 -8 = 12 (cm)
c, Áp dụng định lí Py-ta-go vào Δ vuông ABM:
\(MB = \sqrt{8^2 + 6^2} = \sqrt{100} = 10 (cm)\)
Áp dụng định lí Py-ta-go vào Δ vuông DMC:
\(MC = \sqrt{12^2 + 16^2} = \sqrt{400} = 20 (cm)\)
SΔBMC = \(\dfrac{MB.MC}{2} = \dfrac{10.20}{2} = 100 (cm^2)\)
Bài này số đẹp :v
a) Xét tam giác AOD và tam giác BAD có:
{Dˆ:chungAOˆD=DAˆB=90{D^:chungAO^D=DA^B=90⇒ΔAOD≀ΔBAD(g.g)⇒ΔAOD≀ΔBAD(g.g)
b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)DA^O=AB^D=AB^O(ΔAOD≀ΔBAD)
Và AOˆD=AOˆB=90AO^D=AO^B=90 (2 đường chéo vuông góc tại O)
Do đó ΔAOD≀ΔBOA(g.g)ΔAOD≀ΔBOA(g.g)
⇒ADAB=ODAO⇒ADAB=ODAO (1)
Lại có: {DAˆO:chungAOˆD=ADˆC=90{DA^O:chungAO^D=AD^C=90⇒ΔADC≀ΔAOD(g.g)⇒ΔADC≀ΔAOD(g.g)
⇒CDOD=ADAO⇔CDAD=ODAO⇒CDOD=ADAO⇔CDAD=ODAO (2)
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD⇒ADAB=CDAD⇒AD2=AB⋅CD
c) Ta có: AB song song với DC (ABCD là hình thang)
⇒ABˆO=ODˆC(slt)⇒AB^O=OD^C(slt)
Và AOˆB=DOˆC(đ2)AO^B=DO^C(đ2)
Do đó ΔOCD≀ΔOAB(g.g)ΔOCD≀ΔOAB(g.g)
⇒k=OCOA=CDAB=94⇒k=OCOA=CDAB=94
⇒SΔOCDSΔOAB=k2=942=8116⇒SΔOCDSΔOAB=k2=942=8116
Vậy........................
Δ : tam giác. Chúc bạn học tốt nhé!
A B C D M
Ta có : \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
\(\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)
Đồng thời : \(\widehat{AMB}+\widehat{ABM}=90^0\)
\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)
Xét \(\Delta ABM\)VÀ \(\Delta DMC\)có :
\(\widehat{MAB}=\widehat{MDC}=90^0\)
\(\widehat{ABM}=\widehat{DMC}\)
Do đó \(\Delta ABM\)đồng dạng \(\Delta DMC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{AM}=\frac{MD}{DC}\Rightarrow AB.DC=MD.AM\)
Mà \(AM=MD\) , nên : \(AB.DC=AM.AM\left(đpcm\right)\)
b ) Vì \(\Delta ABM\)đồng dạng \(\Delta DMC\)nên :
\(\frac{BM}{MC}=\frac{AB}{MD}\)hay \(\frac{BM}{MC}=\frac{AB}{AM}\)
Đồng thời : \(\widehat{MAB}=\widehat{MDC}=90^0\)
Do đó tam giác ABM đồng dạng tam giác MBC(c-g-c)
Chúc bạn học tốt !!!
K H C M A M' B 4,5 6 7,5
a) Ta có: AB2 + AC2 = 62 + 4,52 = 7,52 = BC2
nên tam giác ABC vuông tại A ( đpcm )
Ta có : \(tgB=\frac{AC}{AB}=\frac{4,5}{6}=0,75\)
\(\Rightarrow\widehat{B}=37^o\)
\(\Rightarrow\widehat{C}=90^o-\widehat{B}=90^o-37^o=53^o\)
Mặt khác trong tam giác ABC vuông tại A, ta có :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
nên \(\frac{1}{AH^2}=\frac{1}{36}+\frac{1}{20,25}\)
\(\Rightarrow AH^2=\frac{36.20,25}{36+20,25}=12,96\)
=> AH = 3,6 cm
b) Gọi khoảng cách từ M đến BC là MK. Ta có :
\(S_{ABC}=\frac{1}{2}AH.BC\)và \(S_{MBC}=\frac{1}{2}MK.BC\)
Ta thấy SMBC = SABC khi MK = AH = 3,6 cm
Do đó để SMBC = SABC thì M phải nằm trên đường thẳng song song và cách BC một khoảng là 3,6 cm (có hai đường thẳng như trên hình ).
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
có thể theo hệ thức lượng(gợi ý)
ta có Sabc=1/2ab.ac (trong tg vuông dg cao là cạnh góc vuông)
Sabc=1/2ah.bc
=>ah.bc=ab.ac (có thể xét tg đồng dạng rồi lập tỉ số)
b: Xét ΔABH vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay \(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)
Do đó: ΔAMN\(\sim\)ΔACB
a: Xét ΔABM vuông tại A và ΔDMC có
BA/DM=AM/CD
nên ΔABM đồng dạng với ΔDMC
b: Ta có: ΔABM đồng dạng với ΔDMC
nên góc AMB=góc DCM
=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ
=>góc BMC=90 độ
=>ΔBMC vuông tại M
c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)