K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: AB//CD(gt)=) góc AED= GÓC EDC(SLT)

                         MÀ GÓC EDC = GÓC ADE(GT) 

                         =) TG AED CÂN TẠI A  

                         =)AE=AD (1) 

TA LẠI CÓ BE=BC (CHỨNG MINH TƯƠNG TỰ) (2) 

TỪ (1) VÀ (2) =) AB=AE+EB=AD+BC(ĐPCM)

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

25 tháng 3 2020

b) Vì AC=2AB

AB=BD

=>AC=AD

Xét tam giác ACE và tam giác ADE có:

AC=AD ( chứng minh trên ) 

^CAE=^EAD ( tính chất phân giác )

AE chung

=> tam giác ACE = tam giác ADE ( c.g.c )

=> ^CEA=^AED ( 2 góc tương ứng )

Mà ^CEA kề bù ^AED

=> ^CEA=^AED=90°

=> AE vuông góc CD

AI và AE là 2 tia trùng nhau

=> AI vuông góc CD

Vì AI vuông góc BM

Mà AI vuông góc CD

<=> BM // CD

Chúc bạn học tốt!

25 tháng 3 2020

Vì mình không tìm được cách gõ góc nên kí hiệu ^ là góc nhé! Mong bạn thông cảm

a: Xét ΔABE và ΔFCE có

góc EBA=góc ECF

EB=EC

góc BEA=góc CEF

=>ΔABE=ΔFCE

=>EA=EF

=>E là trung điểm của AF

b: Xét ΔDAF có

DE vừa là phân giác, vừa là trung tuyến

=>ΔDAF cân tại D

=>DA=DF=DC+CF=DC+AB

c: góc BAE=góc AFD

=>góc BAE=góc DAE

=>AE là phân giác góc DAB

3 tháng 6 2018

đề sai rồi

DE=HD chứ

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD