K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 2: 

a: Xét ΔABE và ΔACD có

AB=AC
\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔBDC và ΔCEB có

BD=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

DO đó: ΔBDC=ΔCEB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{DBO}=\widehat{ECO}\)

Do đó: ΔODB=ΔOEC

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

3 tháng 4 2017

x=1+x

x=1+x

x=1+x=1-2

17 tháng 4 2017

1 + 1 = 2

2 + 2 =4

=> 2+4=6

1+1+2+2=2+4

=6

=> x=6

A B C E D O

a, Xét tam giác ABE và tam giác ACD có :

             AB = AC ( theo bài cho )

            góc A chung

            AE = AD ( theo bài cho )

Do đó : tam giác ABE = tam giác ACD ( c.g.c )

=> góc ABE = góc ACD ( hai góc tương ứng )

b, Ta có : góc OBC = góc B - góc ABE 

               góc OCB = góc C - góc ACD 

mà góc ABE = góc ACD ( theo câu a )

và góc B = góc C ( vì AB = AC nên tam giác ABC cân )

=> góc OBC = góc OCB 

=> tam giác OBC cân tại O nên OB = OC .

Xét tam giác OBD và tam giác OCE có :

         góc BOD = góc COE ( đối đỉnh )

         OB = OC 

         góc OBD = góc OCE ( vì góc ABE = góc ACD hay góc OBD = góc OCE )

Do đó : tam giác OBD = tam giác OCE ( g.c.g )

=> OD = OE ( hai góc tương ứng )

Vậy OD = 0E và OB = OC .

Học tốt nhé

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔDBC và ΔECB có 

DB=EC

DC=EB

CB chung

Do đó:ΔDBC=ΔECB

Suy ra: \(\widehat{ODB}=\widehat{OEC}\)

Xét ΔODB và ΔOEC có 

\(\widehat{ODB}=\widehat{OEC}\)

BD=CE

\(\widehat{OBD}=\widehat{OCE}\)

Do đó: ΔODB=ΔOEC

c: Ta có: ΔODB=ΔOEC

nên OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

Ta có: ΔABC cân tại A

mà AO là đường phân giác

nên AO là đường cao

9 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AB=AC; góc A chung; AD=AE 

nên tam giác ABE= tam giác ACD(c.g.c)

suy ra BE=CD

9 tháng 1 2019

Chỉ giúp mk câu c) thôi