Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Tính DH=3,6cm.
-Từ C kẻ CK vuông với BD. Có CK=AH
-Xét tam giác ADH và DHC có chung đáy DH, chiều cao = nhau => diện tích = nhau
=> Diện tích tứ giác AHCB = diện tích ABCD - 2 lần diện tích tam giác ADH = 30,72
Đúng thì k hộ nhe =)))
a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔDHA\(\sim\)ΔDAB(g-g)
a: BD=căn 8^2+6^2=10cm
b: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
góc HDA chung
=>ΔDHA đồng dạng với ΔDAB
c: AH=8*6/10=4,8cm
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB
A B C D H 8cm 6cm
Giải
a) Xét\(\Delta AHB\)và\(\Delta BCD\)có:
\(\widehat{AHB}=\widehat{BCD}=90^o\)
\(\widehat{ABH}=\widehat{BDC}\) (so le trong)
=>\(\Delta AHB~\Delta BCD\) (g.g)
b) Xét\(\Delta AHD\)và\(\Delta AHB\)có:
\(\widehat{AHD}=\widehat{BHA}=90^o\)
\(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))
=>\(\Delta AHD~\Delta AHB\) (g.g)
Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)
Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)
c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:
\(BD^2=BC^2+DC^2\)
\(BD^2=6^2+8^2\)
\(BD^2=36+64\)
\(BD=\sqrt{100}=10\left(cm,BD>0\right)\)
Xét tam giác vuông ABD có:
\(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:
\(AB^2=AH^2+HB^2\)
\(8^2=4,8^2+HB^2\)
\(HB^2=8^2-4,8^2\)
\(HB^2=40,96\)
\(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)
=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)
Còn HC bn tự tính nhé!
#hoktot<3#
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABD\(\sim\)ΔHBA
b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)
ban tim canh MH va canh NH. Sau do chung minh tam giacAMH dong dang tam giacNHB roi suy ra canh ti le va goc de chung minh 2 tam giac do dong dang
Lời giải:
a) Xét tam giác $DHA$ và $DAB$ có:
\(\left\{\begin{matrix} \text{chung góc D}\\ \widehat{DHA}=\widehat{DAB}=90^0\end{matrix}\right.\Rightarrow \triangle DHA\sim \triangle DAB(g.g)\)
b)
Áp dụng định lý Pitago:
\(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+8^2}=10\)
Ta có: \(\frac{AB.AD}{2}=S_{ABD}=\frac{AH.BD}{2}\)
\(\Rightarrow AH=\frac{AB.AD}{BD}=\frac{6.8}{10}=4,8\)
c)
Pitago: \(HB=\sqrt{AB^2-AH^2}=\sqrt{8^2-4,8^2}=\frac{32}{5}\)
\(\Rightarrow S_{AHB}=\frac{AH.HB}{2}=\frac{4,8.\frac{32}{5}}{2}=15,36\)
\(\frac{S_{HBC}}{S_{DBC}}=\frac{HB}{BD}=\frac{32}{5.10}=0,64\)
\(\Rightarrow S_{HBC}=0,64.S_{DBC}=0,64.\frac{6.8}{2}=15,36\)
Do đó:
\(S_{AHCB}=S_{AHB}+S_{HBC}=15,36+15,36=30,72\) (cm vuông)
Một cách khác cho câu c.
c, Từ C dựng đường cao \(CK\) của tam giác BCD
Dễ dàng chứng minh được AHCK là hình bình hành
Do đó \(AH=CK\)
Ta có: \(S_{AHB}=\dfrac{AH.BH}{2};S_{BCK}=\dfrac{CK.BK}{2}\)
mà \(AH=CK\)(cmt) nên \(S_{AHB}=S_{CKB}\)
Mặt khác \(S_{AHB}=15,36\left(cm^2\right)\)(tính như của chị Akai)
\(\Rightarrow S_{ABCH}=S_{AHB}+S_{CHK}=2.S_{AHB}=2.15,36=30,72\left(cm^2\right)\)