K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)

8 tháng 4 2016

-Tính DH=3,6cm. 

-Từ C kẻ CK vuông với BD. Có CK=AH

-Xét tam giác ADH và DHC có chung đáy DH, chiều cao = nhau => diện tích = nhau

=> Diện tích tứ giác AHCB = diện tích ABCD - 2 lần diện tích tam giác ADH = 30,72 

Đúng thì k hộ nhe =)))

16 tháng 5 2023

k

a: BD=căn 8^2+6^2=10cm

b: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

c: AH=8*6/10=4,8cm

24 tháng 6 2023

loading...

a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)

b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có

góc ADB chung

Do đó: ΔADB\(\sim\)ΔHDA

23 tháng 5 2022

cho mình xin vẽ hình với chính xác câu b/c/ được k cậu :<khocroi

a: BD=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

=>BA/BH=BD/BA

=>BA^2=BH*BD

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Ôn tập cuối năm phần hình học

Lời giải:

a) Xét tam giác $DHA$ và $DAB$ có:

\(\left\{\begin{matrix} \text{chung góc D}\\ \widehat{DHA}=\widehat{DAB}=90^0\end{matrix}\right.\Rightarrow \triangle DHA\sim \triangle DAB(g.g)\)

b)

Áp dụng định lý Pitago:

\(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+8^2}=10\)

Ta có: \(\frac{AB.AD}{2}=S_{ABD}=\frac{AH.BD}{2}\)

\(\Rightarrow AH=\frac{AB.AD}{BD}=\frac{6.8}{10}=4,8\)

c)

Pitago: \(HB=\sqrt{AB^2-AH^2}=\sqrt{8^2-4,8^2}=\frac{32}{5}\)

\(\Rightarrow S_{AHB}=\frac{AH.HB}{2}=\frac{4,8.\frac{32}{5}}{2}=15,36\)

\(\frac{S_{HBC}}{S_{DBC}}=\frac{HB}{BD}=\frac{32}{5.10}=0,64\)

\(\Rightarrow S_{HBC}=0,64.S_{DBC}=0,64.\frac{6.8}{2}=15,36\)

Do đó:
\(S_{AHCB}=S_{AHB}+S_{HBC}=15,36+15,36=30,72\) (cm vuông)

13 tháng 5 2018

Một cách khác cho câu c.

c, Từ C dựng đường cao \(CK\) của tam giác BCD

Dễ dàng chứng minh được AHCK là hình bình hành

Do đó \(AH=CK\)

Ta có: \(S_{AHB}=\dfrac{AH.BH}{2};S_{BCK}=\dfrac{CK.BK}{2}\)

\(AH=CK\)(cmt) nên \(S_{AHB}=S_{CKB}\)

Mặt khác \(S_{AHB}=15,36\left(cm^2\right)\)(tính như của chị Akai)

\(\Rightarrow S_{ABCH}=S_{AHB}+S_{CHK}=2.S_{AHB}=2.15,36=30,72\left(cm^2\right)\)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm