Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a ) Gọi \(MN\cap PQ=E\)
Vì DP // BC , DC//BQ \(\Rightarrow\frac{EP}{EC}=\frac{ED}{EB}=\frac{EC}{EQ}\)
\(\Rightarrow EC^2=EP.EQ\)
Mà EC là tiếp tuyến của (O) , EMN là cát tuyến \(\Rightarrow EC^2=EN.EM\)
\(\Rightarrow EP.EQ=EN.EM\Rightarrow MNPQ\) nội tiếp
b ) Gọi \(MN\cap\left(O\right)=F\)
\(\Rightarrow PC\) là tiếp tuyến của (O)
\(\Rightarrow\widehat{FCP}=\widehat{FMC}=\widehat{KML}\)
Mà \(\widehat{MFC}=\widehat{EPC}+\widehat{FCP}\)
\(\Rightarrow\widehat{MNC}=\widehat{MNQ}+\widehat{KML}\)
\(\Rightarrow\widehat{KML}=\widehat{MNC}-\widehat{MNQ}=\widehat{KNL}\)
\(\Rightarrow MNLK\) nội tiếp
\(\Rightarrow\widehat{MLK}=\widehat{KNM}=\widehat{QPM}\)
\(\Rightarrow\) KL// PQ \(\Rightarrow KL\perp OC\)
Chúc bạn học tốt !!
A B C D O E F I
a) Ta thấy \(\Delta\)CEF có CO vừa là phân giác ^ECF, vừa vuông góc với EF, suy ra \(\Delta\)CEF cân tại C
Vì tứ giác ABCD là hình bình hành nên DC = AB = BE (1)
Ta có ^BCO = ^DCO suy ra (OB = (OD hay OB = OD (2); lại có ^ODC = ^OBE (Tứ giác BCDO nội tiếp) (3)
Từ (1);(2);(3) suy ra \(\Delta\)OBE = \(\Delta\)ODC (c.g.c) (đpcm).
b) Từ câu a ta có OC = OE. Tương tự OC = OF. Vậy O là tâm ngoại tiếp \(\Delta\)CEF (đpcm).
c) Dễ có \(\Delta\)OIB ~ \(\Delta\)DIC suy ra IB.DC = IC.OB hay IB.BE = IC.OB. Tương tự ID.DF = IC.OD
Từ đó IB.BE = ID.DF (Vì OB = OD). Mà EI = FI (Vì I thuộc trung trực EF) nên IB.BE.EI = ID.DF.FI (đpcm).
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Đường tròn c: Đường tròn qua B, D, C Đường tròn c_1: Đường tròn qua M với tâm O Đoạn thẳng f: Đoạn thẳng [B, A] Đoạn thẳng g: Đoạn thẳng [A, D] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng k_1: Đoạn thẳng [D, C] Đoạn thẳng r: Đoạn thẳng [M, B] Đoạn thẳng s: Đoạn thẳng [M, N] Đoạn thẳng t: Đoạn thẳng [D, N] Đoạn thẳng a: Đoạn thẳng [E, C] Đoạn thẳng b: Đoạn thẳng [O, B] Đoạn thẳng d: Đoạn thẳng [O, D] Đoạn thẳng e: Đoạn thẳng [M, O] Đoạn thẳng f_1: Đoạn thẳng [B, D] Đoạn thẳng k: Đoạn thẳng [B, I] Đoạn thẳng g_1: Đoạn thẳng [I, K] Đoạn thẳng h_1: Đoạn thẳng [I, D] B = (1.16, 5.22) B = (1.16, 5.22) B = (1.16, 5.22) A = (-2.94, -0.34) A = (-2.94, -0.34) A = (-2.94, -0.34) D = (9.24, 0.56) D = (9.24, 0.56) D = (9.24, 0.56) Điểm C: Giao điểm của h, i Điểm C: Giao điểm của h, i Điểm C: Giao điểm của h, i Điểm O: Giao điểm của c, l Điểm O: Giao điểm của c, l Điểm O: Giao điểm của c, l Điểm M: Giao điểm của n, p Điểm M: Giao điểm của n, p Điểm M: Giao điểm của n, p Điểm N: Giao điểm của n, q Điểm N: Giao điểm của n, q Điểm N: Giao điểm của n, q Điểm E: Giao điểm của l, s Điểm E: Giao điểm của l, s Điểm K: Giao điểm của a, f_1 Điểm K: Giao điểm của a, f_1 Điểm K: Giao điểm của a, f_1 Điểm I: Tâm của c Điểm I: Tâm của c Điểm I: Tâm của c
a. Ta thấy ngay BCDO là tứ giác nội tiếp nên \(\widehat{MBO}=\widehat{ODC}\) (Góc ngoài tại đỉnh đổi)
b. Xét tam giác CMN có CO là đường cao đồng thời phân giác, vậy nó là tam giác cân. Từ đó suy ra \(\widehat{CMA}=\widehat{CNA}\)
Do ABCD là hình bình hành nên \(\widehat{CNA}=\widehat{BAM}\Rightarrow\widehat{BAM}=\widehat{BMA}\Rightarrow BM=BA=DC\left(1\right)\)
Xét trong đường tròn ngoại tiếp tam giác BDC có \(\widehat{BCO}=\widehat{DCO}\Rightarrow BO=OD\left(2\right)\)
Theo câu a, \(\widehat{MBO}=\widehat{ODC}\left(3\right)\)
Từ (1), (2), (3) suy ra \(\Delta OBM=\Delta ODC\left(g-c-g\right)\)
A B C D M N P Q K L O T
Qua P dựng đường thẳng song song với CM, đường thẳng này cắt BD tại T.
Chú ý rằng tứ giác ABCD là hình bình hành nên PD // CB và CD // BQ
Từ đó ta có 2 cặp tam giác đồng dạng theo TH g.g: \(\Delta\)BCQ ~ \(\Delta\)DPC; \(\Delta\)CBM ~ \(\Delta\)PDT
Suy ra \(\frac{DT}{BM}=\frac{PD}{CB}=\frac{CD}{QB}\). Từ đây \(\Delta\)DTC ~ \(\Delta\)BMQ (c.g.c), suy ra CT // QM (1)
Mặt khác, do PQ là tiếp tuyến tại C của (O) nên ^PCN = ^CMN = ^PTN. Suy ra tứ giác CTNP nội tiếp (2)
Từ (1) và (2) suy ra tứ giác MQPN nội tiếp (3) . Từ tứ giác CTNP nội tiếp ta có ^PCN = ^PTC = ^QMC.
Hay ^PNL = ^QMK. Kết hợp với (3) suy ra tứ giác MKLN nội tiếp. Áp dụng ĐL Reim ta thu được KL // PQ
Mà OC vuông góc với PQ nên OC cũng vuông góc với KL (đpcm).