Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M N P Q K L O T
Qua P dựng đường thẳng song song với CM, đường thẳng này cắt BD tại T.
Chú ý rằng tứ giác ABCD là hình bình hành nên PD // CB và CD // BQ
Từ đó ta có 2 cặp tam giác đồng dạng theo TH g.g: \(\Delta\)BCQ ~ \(\Delta\)DPC; \(\Delta\)CBM ~ \(\Delta\)PDT
Suy ra \(\frac{DT}{BM}=\frac{PD}{CB}=\frac{CD}{QB}\). Từ đây \(\Delta\)DTC ~ \(\Delta\)BMQ (c.g.c), suy ra CT // QM (1)
Mặt khác, do PQ là tiếp tuyến tại C của (O) nên ^PCN = ^CMN = ^PTN. Suy ra tứ giác CTNP nội tiếp (2)
Từ (1) và (2) suy ra tứ giác MQPN nội tiếp (3) . Từ tứ giác CTNP nội tiếp ta có ^PCN = ^PTC = ^QMC.
Hay ^PNL = ^QMK. Kết hợp với (3) suy ra tứ giác MKLN nội tiếp. Áp dụng ĐL Reim ta thu được KL // PQ
Mà OC vuông góc với PQ nên OC cũng vuông góc với KL (đpcm).
M A B C I D N O H K
a) CM: \(\widehat{OBM}=\widehat{ODC}\)
\(\widehat{OBM}+\widehat{OBC}=180^o\)( kề bù)
\(\widehat{ODC}+\widehat{OBC}=180^o\)( tứ giác ODCB nội tiếp )
=> \(\widehat{OBM}=\widehat{ODC}\)
b)
+)Xét tam giác MCN có CO là tia phân giác đồng thời là đường cao
=> Tam giác CMN cân tại C (1)
=> \(\widehat{BMA}=\widehat{DNA}=\widehat{BAM}\)( CD//BA => DN//BA)
=> Tam giác BMA cân tại B
=> BM=BA=CD ( ABCD là hình bình hành) (2)
+) CO là phân giác \(\widehat{BCD}\)
=> \(\widebat{BO}=\widebat{DO}\)
=> BO=DO (3)
+) Xét tam giác BOM và tam giác DOC có:
\(\widehat{OBM}=\widehat{ODC}\)( theo a)
BM=CD ( theo 2)
BO=DO (theo 3)
=> \(\Delta BOM=\Delta DOC\)
+) OM=OC
Và từ (1) => CO là đường trung trực của MN
=> OM=ON
Vậy OM=ON=OC
=> O là tâm đường tròn ngoại tiếp tam giác CMN
c) GỌi H là giao của IO và BD
=> IH vuông BD và H là trung điể m BD
Ta có: \(KD^2=\left(HD-HK\right)^2=HD^2+HK^2-2.HD.HK=ID^2-IH^2+IK^2-IH^2-2HD\left(HD-KD\right)\)
\(=ID^2+IK^2-2\left(IH^2+HD^2\right)+2HD.KD=ID^2+IK^2-2ID^2+2HD.KD\)
\(=IK^2-ID^2+2HD.KD\)
=> \(IB^2-IK^2=ID^2-IK^2=2HD.KD-KD^2\)
=> \(\frac{IB^2-IK^2}{KD^2}=\frac{2HD-KD}{KD}=\frac{BD-KD}{KD}=\frac{BK}{KD}\)(4)
Ta lại có: CK là phân giác trong của tam giác CBD
=> \(\frac{BK}{KD}=\frac{CB}{CD}\)
Và MB=DC ( theo cm câu a) , CM=CN ( Tam giác CMN cân)
=> CB=DN
=> \(\frac{BK}{KD}=\frac{DN}{MB}\)(5)
Từ (4), (5)
=> ĐPCM
Giải
a ) Gọi \(MN\cap PQ=E\)
Vì DP // BC , DC//BQ \(\Rightarrow\frac{EP}{EC}=\frac{ED}{EB}=\frac{EC}{EQ}\)
\(\Rightarrow EC^2=EP.EQ\)
Mà EC là tiếp tuyến của (O) , EMN là cát tuyến \(\Rightarrow EC^2=EN.EM\)
\(\Rightarrow EP.EQ=EN.EM\Rightarrow MNPQ\) nội tiếp
b ) Gọi \(MN\cap\left(O\right)=F\)
\(\Rightarrow PC\) là tiếp tuyến của (O)
\(\Rightarrow\widehat{FCP}=\widehat{FMC}=\widehat{KML}\)
Mà \(\widehat{MFC}=\widehat{EPC}+\widehat{FCP}\)
\(\Rightarrow\widehat{MNC}=\widehat{MNQ}+\widehat{KML}\)
\(\Rightarrow\widehat{KML}=\widehat{MNC}-\widehat{MNQ}=\widehat{KNL}\)
\(\Rightarrow MNLK\) nội tiếp
\(\Rightarrow\widehat{MLK}=\widehat{KNM}=\widehat{QPM}\)
\(\Rightarrow\) KL// PQ \(\Rightarrow KL\perp OC\)
Chúc bạn học tốt !!