Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu rồi bạn, cần hạn chế hàm \(f\left(x\right)\) vì hàm \(f\left(x\right)\) bất kì thì miền xác định D của nó cũng bất kì.
Nếu hàm \(f\left(x\right)\) có miền xác định ko đối xứng (ví dụ \(y=\sqrt{x}\)) thì không thể tách thành 2 hàm chẵn lẻ vì \(f\left(x\right)=g_1\left(x\right)+g_2\left(x\right)\) thì đương nhiên \(g_1\left(x\right)\) và \(g_2\left(x\right)\) cùng miền xác định với \(f\left(x\right)\). Mà một hàm số có miền xác định không đối xứng thì không thể là hàm chẵn hay hàm lẻ.
Đặt \(f\left(x\right)=ax+b\Rightarrow\left\{{}\begin{matrix}f\left(2x-1\right)=a\left(2x-1\right)+b=2ax-a+b\\f\left(2x+1\right)=a\left(2x+1\right)+b=2ax+a+b\end{matrix}\right.\)
\(f\left(2x-1\right)+f\left(2x+1\right)-f\left(x\right)=x+3\)
\(\Leftrightarrow2ax-a+b+2ax+a+b-ax-b=x+3\)
\(\Leftrightarrow3ax-x+b-3=0\)
\(\Leftrightarrow\left(3a-1\right)x+\left(b-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a-1=0\\b-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{3}\\b=3\end{matrix}\right.\) \(\Rightarrow f\left(x\right)=\frac{1}{3}x+3\)
Từ biểu thức của số trung bình cộng ta suy ra:
\(na=a_1+a_2+.....+a_n\).
Nếu tất cả các số: \(a_1,a_2,a_3,....,a_n\) đều nhỏ hơn a thì rõ ràng:
\(a_1+a_2+a_3+....+a_n< na.\)
Như vậy đẳng thức \(na=a_1+a_2+.....+a_n\) không xảy ra. ( Mâu thuẫn).
Ta có đpcm.
Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau
Nên \(D_2< D_1\) là vô nghĩa
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
\(f\left(x\right)\) xác định khi \(\frac{x-4}{1-x}\ge0\Leftrightarrow1< x\le4\)
\(g\left(x\right)\) xác định khi \(\frac{x^2+7x-10}{\left(3-x\right)^{2019}}=\frac{\left(x-2\right)\left(5-x\right)}{\left(3-x\right)^{2019}}\ge0\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\x\ge5\end{matrix}\right.\)
Giao lại ta được: \(2\le x< 3\)