Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại đề, ko có khái niệm 2 tập hợp lớn hơn / nhỏ hơn nhau
Nên \(D_2< D_1\) là vô nghĩa
\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)
\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)
\(\Rightarrow D_2=\left(-2;+\infty\right)\)
\(\Rightarrow A=\left\{-1;1;2;3\right\}\)
1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...
2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)
\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)
\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)
\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)
\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)
c/ A M C B N BC=8 AC=7 AB=6
- Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)
\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)
\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)
- \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)
\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)
\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)
\(=\frac{173}{2}\)
\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)
\(f\left(x\right)\) xác định khi \(\frac{x-4}{1-x}\ge0\Leftrightarrow1< x\le4\)
\(g\left(x\right)\) xác định khi \(\frac{x^2+7x-10}{\left(3-x\right)^{2019}}=\frac{\left(x-2\right)\left(5-x\right)}{\left(3-x\right)^{2019}}\ge0\) \(\Rightarrow\left[{}\begin{matrix}2\le x< 3\\x\ge5\end{matrix}\right.\)
Giao lại ta được: \(2\le x< 3\)