Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có :
PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\)
K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)
= \(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\) \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)
" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
Suy ra : y = -x hoặc y = -x + 4
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Giả sử \(x_0\) là hoành độ tiếp điểm
Phương trình tiếp tuyến d:
\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)
\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)
\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)
Dấu "=" xảy ra khi:
\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)
\(y'=\dfrac{3}{\left(x+1\right)^2}\Rightarrow\) phương trình tiếp tuyến tại \(M\left(m;\dfrac{m-2}{m+1}\right)\) có dạng:
\(y=\dfrac{3}{\left(m+1\right)^2}\left(x-m\right)+\dfrac{m-2}{m+1}\)
\(\Leftrightarrow3x-\left(m+1\right)^2y+m^2-4m-2=0\)
\(P=d\left(I;d\right)=\dfrac{\left|6m+6\right|}{\sqrt{9+\left(m+1\right)^4}}=\dfrac{6}{\sqrt{\left(m+1\right)^2+\dfrac{9}{\left(m+1\right)^2}}}\le\dfrac{6}{\sqrt{2\sqrt{\dfrac{9\left(m+1\right)^2}{\left(m+1\right)^2}}}}=\sqrt{6}\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left(m+1\right)^2=\dfrac{9}{\left(m+1\right)^2}\Leftrightarrow\left(m+1\right)^2=3\Rightarrow m=\) ... lại xấu :)
\(y'=\frac{-1}{\left(x-1\right)^2}\)
a/ Gỉa sử tại \(A\left(a;\frac{2a-1}{a-1}\right)\) đồ thị hàm số có tiếp tuyến thỏa mãn yêu cầu
Phương trình d tiếp tuyến:
\(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{2a-1}{a-1}\)
Giao điểm của d với \(x=1\) và \(y=2\) lần lượt có tọa độ \(B\left(1;\frac{2a}{a-1}\right)\) và \(C\left(2a-1;2\right)\)
\(IB=\sqrt{\left(1-1\right)^2+\left(\frac{2a}{a-1}-2\right)^2}=\frac{2}{\left|a-1\right|}\)
\(IC=\sqrt{\left(2a-1-1\right)^2+\left(2-2\right)^2}=2\left|a-1\right|\)
\(BC=\sqrt{IB^2+IC^2}=\sqrt{\frac{4}{\left(a-1\right)^2}+4\left(a-1\right)^2}\)
\(\Rightarrow P_{IBC}=IB+IC+BC=\frac{2}{\left|a-1\right|}+2\left|a-1\right|+\sqrt{\frac{4}{\left(a-1\right)^2}+4\left(a-1\right)^2}\)
\(\Rightarrow P_{IBC}\ge2\sqrt{\frac{2}{\left|a-1\right|}.2\left|a-1\right|}+\sqrt{2\sqrt{\frac{4}{\left(a-1\right)^2}.4\left(a-1\right)^2}}=4+2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(a-1\right)^2=1\Rightarrow a=0\)
Phương trình d: \(y=-x+1\)
b/ Có một cách ứng dụng, đó là tiếp tuyến có khoảng cách đến giao điểm của hai tiệm cận là lớn nhất khi tiếp tuyến đó vuông góc với đường phân giác hai tiệm cận (đường phân giác có cắt đồ thị hàm số)
\(\Rightarrow\) Nếu hàm số đồng biến thì tiếp tuyến này có hệ số góc bằng 1, hàm số nghịch biến thì tiếp tuyến này có hệ số góc bằng -1
Ví dụ trong bài này, hàm số nghịch biến nên ta có ngay tiếp tuyến cần tìm có dạng \(y=-x+b\)
Mặt khác \(y'\left(x_0\right)=-1\Rightarrow\frac{-1}{\left(x_0-1\right)^2}=-1\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)
Phương trình tiếp tuyến: \(\left[{}\begin{matrix}y=-x+1\\y=-x+5\end{matrix}\right.\)
// Làm theo kiểu bình thường:
Gọi \(A\left(a;\frac{2a-1}{a-1}\right)\) là điểm mà tại đó tiếp tuyến có tính chất thoả mãn yêu cầu
Phương trình tiếp tuyến d: \(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{2a-1}{a-1}\)
\(\Leftrightarrow x+\left(a-1\right)^2y-2a^2+2a-1=0\)
Áp dụng công thức khoảng cách:
\(d\left(I;d\right)=\frac{\left|1+2\left(a-1\right)^2-2a^2+2a-1\right|}{\sqrt{1^2+\left(a-1\right)^4}}=\frac{2\left|a-1\right|}{\sqrt{1+\left(a-1\right)^4}}=\frac{2}{\sqrt{\frac{1}{\left(a-1\right)^2}+\left(a-1\right)^2}}\le\frac{2}{\sqrt{2\sqrt{\frac{1}{\left(a-1\right)^2}\left(a-1\right)^2}}}=\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(a-1\right)^4=1\Rightarrow\left[{}\begin{matrix}a=0\\a=2\end{matrix}\right.\)
Phương trình tiếp tuyến: \(\left[{}\begin{matrix}y=-x+1\\y=-x+5\end{matrix}\right.\)
Rõ ràng cách này dài hơn rất nhiều
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06)
Tập xác định: \(D= \mathbb{R}\setminus \{1\}\)
Ta có: \(y'=\dfrac{-1}{(x-1)^2} \ \forall x\in D\)
a) Do \(y_A=3\) và \(A\in (h)\) nên ta có:
\(\dfrac{2x_A-1}{x_A-1}=3 \Leftrightarrow x_A=2 \ \ (t/m)\)
Suy ra tiếp tuyến qua A của (h) là:
\(y-y_A=y'(x_A)(x-x_A)\\ \Leftrightarrow y-3=-1(x-2)\\ \Leftrightarrow x+y-5=0\)
Giả sử tiếp điểm của tiếp tuyến đó với (h) là \(B(x_B,y_B), \ x_B \ne 1\)
Do \(B\in(h)\) nên \(y_B=\dfrac{2x_B-1}{x_B-1}\)
Khi đó ta có:
\(MB=2 \Leftrightarrow \sqrt{(x_B)^2+(\dfrac{2x_B-1}{x_B-1}-1)^2}=2 \Leftrightarrow x^2_B+\dfrac{x^2_B}{(x_B-1)^2}=4 \\ \Leftrightarrow x^2_B(x_B-1)^2+x^2_B=4(x_B-1)^2 \Leftrightarrow x^4_B-2x^3_B-2x^2_B+8x_B-4=0\\ \Leftrightarrow (x^2_B-x_B+1)^2=5(x_B-1)^2\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-x_B+1=\sqrt{5}(x_B-1)\\ x^2_B-x_B+1=-\sqrt{5}(x_B-1) \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x^2_B-(\sqrt{5}+1)x_B+\sqrt{5}+1=0\ (vô nghiệm)\\ x^2_B+(\sqrt{5}-1)x_B+1-\sqrt{5}=0 \end{array}{} \right.\\ \Leftrightarrow \left[ \begin{array}{} x_B=\dfrac{1-\sqrt{5}+\sqrt{2+2\sqrt{5}}}{2}\\ x_B=\dfrac{1-\sqrt{5}-\sqrt{2+2\sqrt{5}}}{2} \end{array}{} \right.\\ \)Từ đó với cách tìm tiếp tuyến tương tự như câu (a) em sẽ viết được tiếp tuyến!
\(y'=8x^3-8x\)
a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)
\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)
\(y'\left(-2\right)=47\)
Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)
b. Gọi tiếp điểm có hoành độ \(x_0\)
Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)
Do tiếp tuyến qua A:
\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)
\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)
\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)
Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được
\(y'=\dfrac{-1}{\left(x-1\right)^2}\)
Gọi tiếp tuyến qua điểm \(M\left(a;b\right)\) thuộc (C) có dạng:
\(y=\dfrac{-1}{\left(a-1\right)^2}\left(x-a\right)+\dfrac{2a-1}{a-1}\)
\(\Leftrightarrow x+\left(a-1\right)^2y-2a^2+2a-1=0\)
Áp dụng công thức khoảng cách:
\(\dfrac{\left|1+2\left(a-1\right)^2-2a^2+2a-1\right|}{\sqrt{1+\left(a-1\right)^4}}=\sqrt{2}\)
\(\Leftrightarrow\left|2a-2\right|=\sqrt{2}.\sqrt{1+\left(a-1\right)^4}\)
\(\Leftrightarrow2\left(a-1\right)^2=1+\left(a-1\right)^4\)
\(\Leftrightarrow\left[\left(a-1\right)^2-1\right]^2=0\Rightarrow a=...\)
b.
Vẫn từ công thức khoảng cách trên:
\(d=\dfrac{\left|2a-2\right|}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2\sqrt{\left(a-1\right)^2}}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(a-1\right)^2}+\left(a-1\right)^2}}\)
\(d\le\dfrac{2}{\sqrt{2\sqrt{\dfrac{\left(a-1\right)^2}{\left(a-1\right)^2}}}}=\sqrt{2}\)
Vậy \(d_{max}=\sqrt{2}\) khi tiếp tuyến trùng với các tiếp tuyến câu a