K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2022

Ta có : \(y=\dfrac{x}{x-1}=1+\dfrac{1}{x-1}\Rightarrow y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử M(xo ; yo) là tiếp điểm của tiếp tuyến d với đths trên \(\). Ta có : 

 PT d : \(y=\dfrac{-1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_{0-1}}=\dfrac{-x}{\left(x_0-1\right)^2}+\dfrac{x_0^2}{\left(x_0-1\right)^2}\) 

K/C từ B(1;1) đến d : d(B;d) = \(\left|\dfrac{\dfrac{1}{\left(x_0-1\right)^2}+1-\dfrac{x_0^2}{\left(x_0-1\right)^2}}{\sqrt{\dfrac{1}{\left(x_0-1\right)^4}+1}}\right|\)  

\(\left|\dfrac{2\left(1-x_0\right)}{\left(x_0-1\right)^2}\right|:\dfrac{\sqrt{\left(x_0-1\right)^4+1}}{\left(x_0-1\right)^2}=\dfrac{2\left|1-x_0\right|}{\sqrt{\left(1-x_0\right)^4+1}}\)   \(\le\dfrac{2\left|1-x_0\right|}{\sqrt{2\left(1-x_0\right)^2}}=\sqrt{2}\)

" = " \(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

Suy ra : y = -x hoặc y = -x + 4 

NV
23 tháng 4 2022

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Giả sử \(x_0\) là hoành độ tiếp điểm

Phương trình tiếp tuyến d:

\(y=-\dfrac{1}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{x_0}{x_0-1}\)

\(\Rightarrow x+\left(x_0-1\right)^2y-x_0^2=0\)

\(d\left(B;d\right)=\dfrac{\left|1+\left(x_0-1\right)^2-x_0^2\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2\left|x_0-1\right|}{\sqrt{1+\left(x_0-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(x_0-1\right)^2}+\left(x_0-1\right)^2}}\le\dfrac{2}{\sqrt{2}}\)

Dấu "=" xảy ra khi:

\(\dfrac{1}{\left(x_0-1\right)^2}=\left(x_0-1\right)^2\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-x\\y=-x+4\end{matrix}\right.\)

26 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.3, -9.06) A = (-4.3, -9.06) A = (-4.3, -9.06) B = (11.06, -9.06) B = (11.06, -9.06) B = (11.06, -9.06)

9 tháng 4 2017

y' = - .

a) Ta có: \(y'\left(x_0\right)=k\Leftrightarrow\) y' = -4. \(\Rightarrow\)k= -4. Vậy phương trình tiếp tuyến của hypebol tại điểm (; 2) là y - 2 = -4(x - ) hay y = -4x + 4.

b)Ta có:\(y'\left(x_0\right)=k\Leftrightarrow\) y' (-1) = -1.\(\Rightarrow\) k= -1. Ngoài ra, ta có y(-1) = -1. Vậy phương trình tiếp tuyến tại điểm có tọa độ là -1 là

y - (-1) = -[x - (-1)] \(\Leftrightarrow\) y = -x - 2.

c) Gọi x0 là hoành độ tiếp điểm. Ta có

y' (x0) = - <=> - = - <=> x02 = 4 <=> x0 = ±2.

Với x0 = 2 ta có y(2) = , phương trình tiếp tuyến là

y - = - (x - 2) \(\Leftrightarrow\) y = x + 1.

Với x0 = -2 ta có y (-2) = - , phương trình tiếp tuyến là

y - = - [x - (-2)] \(\Leftrightarrow\) y = - x -1

NV
4 tháng 6 2020

Câu 2:

\(f'\left(x\right)=\frac{-3}{\left(2x-1\right)^2}\)

a/ \(x_0=-1\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-\frac{1}{3}\\f\left(x_0\right)=0\end{matrix}\right.\)

Pttt: \(y=-\frac{1}{3}\left(x+1\right)=-\frac{1}{3}x-\frac{1}{3}\)

b/ \(y_0=1\Rightarrow\frac{x_0+1}{2x_0-1}=1\Leftrightarrow x_0+1=2x_0-1\Rightarrow x_0=2\)

\(\Rightarrow f'\left(x_0\right)=-\frac{1}{3}\)

Pttt: \(y=-\frac{1}{3}\left(x-2\right)+1\)

c/ \(x_0=0\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=-3\\y_0=-1\end{matrix}\right.\)

Pttt: \(y=-3x-1\)

d/ \(6x+2y-1=0\Leftrightarrow y=-3x+\frac{1}{2}\)

Tiếp tuyến song song d \(\Rightarrow\) có hệ số góc bằng -3

\(\Rightarrow\frac{-3}{\left(2x_0-1\right)^2}=-3\Rightarrow\left(2x_0-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x_0=0\Rightarrow y_0=-1\\x_0=1\Rightarrow y_0=2\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-3x-1\\y=-3\left(x-1\right)+2\end{matrix}\right.\)

NV
4 tháng 6 2020

Làm câu 1,3 trước, câu 2 hơi dài tối rảnh làm sau:

1/ \(\lim\limits\frac{n^2+2n+1}{2n^2-1}=lim\frac{1+\frac{2}{n}+\frac{1}{n^2}}{2-\frac{1}{n^2}}=\frac{1}{2}\)

\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{x+1}-x^2+2x+2}{x}=\frac{2-0+0+2}{0}=\frac{4}{0}=+\infty\)

Chắc bạn ghi nhầm đề, câu này biểu thức tử số là \(...-x^2+2x-2\) thì hợp lý hơn

3/ \(y'=2sin2x.\left(sin2x\right)'=4sin2x.cos2x=2sin4x\)

b/ \(y'=4x^3-4x\)

c/ \(y'=\frac{3\left(x+2\right)-1\left(3x-1\right)}{\left(x+2\right)^2}=\frac{7}{\left(x+2\right)^2}\)

d/ \(y'=10\left(x^2+x+1\right)^9\left(x^2+x+1\right)'=10\left(x^2+x+1\right)^9.\left(2x+1\right)\)

e/ \(y'=\frac{\left(2x^2-x+3\right)'}{2\sqrt{2x^2-x+3}}=\frac{4x-1}{2\sqrt{2x^2-x+3}}\)