K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2021

- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)

\(\Leftrightarrow x^2-3x+2-m=0\)

\(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)

- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)

Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)

- Ta có : \(OA^2+OB^2=10\)

\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)

\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)

\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)

\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)

\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)

\(\Leftrightarrow2m^2+10m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)

- Kết hợp ĐK (1) => m = 0 ( TM )

Vậy ...

 

 

NV
30 tháng 3 2019

Phương trình hoành độ giao điểm:

\(2x^2+\left(3m-4\right)x-2=3x-1\Leftrightarrow2x^2+\left(3m-7\right)x-1=0\) (1)

\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm hay d luôn cắt (P) tại 2 điểm phân biệt có hoành độ\(a;b\) là nghiệm của (1)

\(A\left(a;3a-1\right);B\left(b;3b-1\right)\) với \(\left\{{}\begin{matrix}a+b=7-3m\\ab=-\frac{1}{2}\end{matrix}\right.\)

Gọi C, D lần lượt là 2 điểm trên Ox có cùng hoành độ với A và B \(\Rightarrow C\left(a;0\right);D\left(b;0\right)\)

Áp dụng định lý Pitago: \(OA^2=OC^2+AC^2=a^2+\left(3a-1\right)^2\)

\(OB^2=OD^2+BD^2=b^2+\left(3b-1\right)^2\)

\(\Rightarrow P=OA^2+OB^2=a^2+b^2+\left(3a-1\right)^2+\left(3b-1\right)^2\)

\(P=10\left(a^2+b^2\right)-6\left(a+b\right)+2\)

\(P=10\left(a+b\right)^2-20ab-6\left(a+b\right)+2\)

\(P=10\left(a+b\right)^2-6\left(a+b\right)+12\)

\(P=10\left[\left(a+b\right)^2-2.\frac{3}{10}\left(a+b\right)+\frac{9}{100}\right]+\frac{111}{10}\)

\(P=10\left(a+b-\frac{3}{10}\right)^2+\frac{111}{9}\ge\frac{111}{9}\)

\(\Rightarrow P_{min}=\frac{111}{9}\) khi \(a+b=\frac{3}{10}\Leftrightarrow7-3m=\frac{3}{10}\Rightarrow m=\frac{67}{30}\)

NV
14 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

NV
15 tháng 10 2019

Phương trình hoành độ giao điểm:

\(-x^2+4x-2=-2x+3m\)

\(\Leftrightarrow x^2-6x+3m+2=0\)

\(\Delta'=9-3m-2=7-3m>0\Rightarrow m< \frac{7}{3}\)

Theo định lý Viet ta có: \(x_A+x_B=6\)

\(\Rightarrow y_A+y_B=-2x_A+3m+-2x_B+3m=-2\left(x_A+x_B\right)+6m=6m-12\)

Gọi I là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_I=\frac{x_A+x_B}{2}=3\\y_I=\frac{y_A+y_B}{2}=3m-6\end{matrix}\right.\)

\(\Rightarrow I\left(3;3m-6\right)\)

13 tháng 6 2017

Phương trình hoành độ giao điểm:  x 2 − 2 x − 2 = x + m ⇔ x 2 − 3 x − 2 − m = 0

(d) cắt (P) tại hai điểm phân biệt A, B ⇔ Δ > 0 ⇔ 17 + 4 m > 0 ⇔ m > − 17 4

Giả sử (*) có hai nghiệm x 1 , x 2 thì x 1 + x 2 = − b a = 3 x 1 . x 2 = c a = − m − 2

= 18 − 4 ( − 2 − m ) + 6 m + 2 m 2 = 2 m 2 + 10 m + 26 = 2 m + 5 2 2 + 27 2 ≥ 27 2 với m > − 17 4

Vậy giá trị nhỏ nhất của O A 2 + O B 2 là 27 2  khi m = − 5 2

Đáp án cần chọn là: A

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{4}x^2-mx+\dfrac{3}{2}m+1=0\)

=>\(x^2-4mx+6m+4=0\)

\(\text{Δ}=\left(-4m\right)^2-4\left(6m+4\right)\)

\(=16m^2-24m-16\)

Để (d) và (P) có 1 điểm chung thì Δ=0

=>16m^2-24m-16=0

=>m=2 hoặc m=-1/2