Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: Sao cho biểu thức T đạt GTLN
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)
=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)
\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(-4m^2+8m>=0\)
=>\(-4\left(m^2-2m\right)>=0\)
=>\(m^2-2m< =0\)
=>\(m\left(m-2\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)
=>0<=m<=2
TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)
=>Loại
\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)
\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)
\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)
\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)
\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)
\(=-2\left(m^2-m+1\right)\)
\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)
Dấu '=' xảy ra khi m=1/2
Lời giải:
PT hoành độ giao điểm:
$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$
$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$
Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb
$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$
$\Leftrightarrow m(2-m)>0$
$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:
$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:
$T=y_1+y_2-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$
$=-2m^2+2m-2$
Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.
a: Thay x=3 và y=0 vào (1), ta được:
\(6-3m=0\)
hay m=2
- Xét phương trình hoành độ giao điểm :\(x^2-2x+2=x+m\)
\(\Leftrightarrow x^2-3x+2-m=0\)
Có \(\Delta=b^2-4ac=9-4\left(2-m\right)=9-8+4m=4m+1\)
- Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\) \(\Leftrightarrow m>-\dfrac{1}{4}\left(1\right)\)
Theo viet : \(\left\{{}\begin{matrix}x_a+x_b=3\\x_ax_b=2-m\end{matrix}\right.\)
- Ta có : \(OA^2+OB^2=10\)
\(\Leftrightarrow x^2_A+y^2_A+x_B^2+y^2_B=10\)
\(\Leftrightarrow x^2_a+x^2_b+\left(x_a+m\right)^2+\left(x_b+m\right)^2=10\)
\(\Leftrightarrow2x^2_a+2x^2_b+2m\left(x_a+x_b\right)+2m^2=10\)
\(\Leftrightarrow2\left(x_a+x_b\right)^2-4x_ax_b+2m\left(x_a+x_b\right)+2m^2-10=0\)
\(\Leftrightarrow18-4\left(2-m\right)+6m+2m^2-10=0\)
\(\Leftrightarrow2m^2+10m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)
- Kết hợp ĐK (1) => m = 0 ( TM )
Vậy ...
Phương trình hoành độ giao điểm:
\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)
Pt đã cho luôn có 2 nghiệm pb
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\)
Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)
Mà I thuộc d'
\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)
\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)
\(\Rightarrow\sum m^2=4\)
\(\dfrac{x^2}{2}+2x+\dfrac{m}{2}+3=0\)
=>x^2+4x+m+6=0
\(\text{Δ}=4^2-4\left(m+6\right)=16-4m-24=-4m-8\)
Để phương trình có hai nghiệm phân biệt thì -4m-8>0
=>-4m>8
=>m<-2
Sử dụng đồ thị cho thuận lợi
Ta có các giao điểm của (C) với trục hoành: \(\left(1;0\right);\left(5;0\right)\), đỉnh \(\left(3;2\right)\), giao điểm với trục tung \(\left(0;\frac{5}{2}\right)\)
Bảng biến thiên:
Nhìn vào BBT ta thấy có 2 trường hợp để \(y=2m-1\) cắt (C) tại 2 điểm pb có hoành độ dương: khi (d) trùng với đường màu đỏ hay \(2m-1=0\Rightarrow m=\frac{1}{2}\) hoặc khi (d) nằm giữa 2 đường màu xanh hay \(2< 2m-1< \frac{5}{2}\Rightarrow\frac{3}{2}< m< \frac{7}{4}\)
Vậy \(\left[{}\begin{matrix}m=\frac{1}{2}\\\frac{3}{2}< m< \frac{7}{4}\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{4}x^2-mx+\dfrac{3}{2}m+1=0\)
=>\(x^2-4mx+6m+4=0\)
\(\text{Δ}=\left(-4m\right)^2-4\left(6m+4\right)\)
\(=16m^2-24m-16\)
Để (d) và (P) có 1 điểm chung thì Δ=0
=>16m^2-24m-16=0
=>m=2 hoặc m=-1/2