Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm: \(x^2+3x-4=x-3m\)
\(\Leftrightarrow x^2+2x-4=-3m\)
Ta có đồ thị hàm \(y=x^2+2x-4\) như sau:
Nhìn vào đồ thị, để \(y=-3m\) cắt \(y=x^2+2x-4\) tại 2 điểm pb thuộc \(\left[-2;3\right]\)
\(\Rightarrow-5< -3m\le-4\Rightarrow\frac{4}{3}\le m< \frac{5}{3}\)
Phương trình hoành độ giao điểm:
\(x^2-4x+3=mx+3\)
\(\Leftrightarrow x\left(x-m-4\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=m+4\end{matrix}\right.\)
Để (d) cắt (P) tại 2 điểm pb \(\Rightarrow m\ne-4\)
Ta được tọa độ 2 điểm \(A\left(0;3\right);B\left(m+4;m^2+4m+3\right)\)
\(\Rightarrow OA=3\)
Gọi H là chân đường cao hạ từ B xuống OA \(\Rightarrow BH=\left|x_B\right|=\left|m+3\right|\)
\(\Rightarrow\frac{1}{2}BH.OA=\frac{9}{2}\Rightarrow BH=3\Rightarrow\left|m+3\right|=3\Rightarrow\left[{}\begin{matrix}m=0\\m=-6\end{matrix}\right.\)
Phân tích: Phương trình hoàn độ giao điểm:
\(x^2+2x-3=x+m\Leftrightarrow x^2+x-3-m=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại 2 điểm phân biệt A ; B
=> (1) có 2 nghiệm phân biệt
<=> \(\Delta>0\) \(\Leftrightarrow m>\dfrac{-13}{4}\left(2\right)\)
giả sử: \(A\left(x_1;y_1\right),B\left(x_2;y_2\right)\) với \(x_1;x_2\) là hai nghiệm của (1) Ta phải có :
\(\left(y_1-1\right)\left(y_2-2\right)< 0\Leftrightarrow\left(x_1+m-1\right)\left(x_2+m-1\right)< 0\)
\(\Leftrightarrow x_1x_2+\left(m-1\right)\left(x_1+x_2\right)+m^2-2m+1< 0\)
\(\Leftrightarrow m^2-4m-1< 0\Leftrightarrow2-\sqrt{5}< m< 2+\sqrt{5}\left(thỏa\left(2\right)\right)\)
\(m\in Z\Rightarrow m\in\left\{0;1;2;3;4\right\}\)
Sửa đề: Sao cho biểu thức T đạt GTLN
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)
=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)
\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(-4m^2+8m>=0\)
=>\(-4\left(m^2-2m\right)>=0\)
=>\(m^2-2m< =0\)
=>\(m\left(m-2\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)
=>0<=m<=2
TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)
=>Loại
\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)
\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)
\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)
\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)
\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)
\(=-2\left(m^2-m+1\right)\)
\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)
Dấu '=' xảy ra khi m=1/2
Lời giải:
PT hoành độ giao điểm:
$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$
$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$
Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb
$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$
$\Leftrightarrow m(2-m)>0$
$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:
$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:
$T=y_1+y_2-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$
$=-2m^2+2m-2$
Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.
Phương trình hoành độ giao điểm:
\(x^2-2x-3=x-m\)
\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu
\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)
Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)
\(x^2_2=16x^2_1\)
\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)
\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)
\(\Leftrightarrow15x_1^2+6x_1-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)
Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)
Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)
Vậy \(m=\dfrac{111}{25}\)