\(f\left(x\right)=ax^2+bx+c\) với a;b;c là các số thực thỏa mãn 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

\(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4}a+\frac{1}{2}b+c\)

\(\Rightarrow f\left(-2\right)=4a-2b+c\)

\(\Rightarrow f\left(\frac{1}{2}\right)+f\left(-2\right)=\frac{17}{4}a-\frac{3}{2}b+2c\)

\(\Rightarrow4\left[f\left(\frac{1}{2}\right)+f\left(-2\right)\right]=17a-6b+8c=0\)( vì 17a-6b+8c=0)

\(\Rightarrow f\left(\frac{1}{2}\right)+f\left(-2\right)=0\)

\(\Rightarrow f\left(\frac{1}{2}\right)=-f\left(-2\right)\)

\(\Rightarrow f\left(\frac{1}{2}\right).f\left(-2\right)=-\left[f\left(-2\right)\right]^2\le0\left(đpcm\right)\)

DD
4 tháng 2 2021

\(f\left(-1\right)=-a+b-c+d=2\)

\(f\left(0\right)=d=1\)

\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)

\(f\left(1\right)=a+b+c+d=7\)

Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)

22 tháng 2 2020

\(f\left(-1\right)=a\left(-1\right)^2+b.\left(-1\right)+c\)

\(=a-b+c\)

\(f\left(2\right)=a.2^2+b.2+c\)

\(=4a+2b+c\)

\(\Rightarrow f\left(2\right)-2.f\left(-1\right)=\left(4a+2b+c\right)-2\left(a-b+c\right)\)

\(=2a+4b-c=0\)

\(\Rightarrow f\left(2\right)=2.f\left(-1\right)\)

\(\Rightarrow f\left(2\right)\)và \(2.f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right)\)và \(f\left(-1\right)\)cùng dấu

\(\Rightarrow f\left(2\right).f\left(-1\right)\ge0\)(đpcm)

22 tháng 2 2020

Ta có :\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

               \(f\left(2\right)=a.2^2+b.2+c=4a+2b+c\)

\(\implies\) \(f\left(2\right)-2f\left(-1\right)=\left(4a+2b+c\right)-2.\left(a-b+c\right)\)

\(\implies\)  \(f\left(2\right)=2.f\left(-1\right)\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)=f\left(-1\right).2f\left(-1\right)=f\left(-1\right)^2.2\) \(\geq\) \(0\)

\(\implies\)  \(f\left(-1\right).f\left(2\right)\) \(\geq\)  \(0\) \(\left(đpcm\right)\)

12 tháng 3 2020

\(f\left(x\right)=ax^2+bx+c\)

\(f\left(2\right)=4a+2b+c\)

\(f\left(-1\right)=a-b+c\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=4a+2b+c+a-b+c\)

\(\Leftrightarrow f\left(2\right)+f\left(-1\right)=5a+b+2c=0\)

\(\Rightarrow f\left(2\right)+f\left(-1\right)=0\Leftrightarrow f\left(2\right)=-f\left(-1\right)\)

\(\Leftrightarrow f\left(2\right).f\left(-1\right)=-f\left(-1\right).f\left(-1\right)\le0\)

\(\Rightarrowđpcm\)

12 tháng 3 2020

thanks

AH
Akai Haruma
Giáo viên
5 tháng 7 2020

Lời giải:

Ta có:

$f(-1)=a-b+c$

$f(2)=4a+2b+c$

Cộng lại ta có: $f(-1)+f(2)=5a+b+2c=0$

$\Rightarrow f(-1)=-f(2)$

$\Rightarrow f(-1)f(2)=-f(2)^2\leq 0$ (đpcm)

NV
14 tháng 2 2020

\(f\left(-1\right)=a+c-b\)

\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)

\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)