K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Xét \(\Delta COM\)và \(\Delta CED\)có:

     \(\widehat{COM}=\widehat{CED}=90^0\)

     \(\widehat{ECD}\): góc chúng

Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)

\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)

\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)

\(=R^2+R^2=2R^2\)(2)

Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)

3 tháng 2 2020

điểm N lm j z bạn

7 tháng 11 2016

Bài 2 nếu ai giải được thì làm ơn gửi cho mình cách giải nhé!!Mình cũng có bài này mà ko giải được

3 tháng 2 2017

gõ sai ND kìa

1: góc CFG=1/2(sđ cung CB+sđ cung AE)

=1/2(sđ cung AC+sđ cung AE)

=1/2*sđ cung CE

=góc CHE

=>góc CFG=góc CHE

=>180 độ-góc EFG=góc CHE

=>góc EFG+góc EHG=180 độ

=>EFGH nội tiếp

4 tháng 8 2023

A B C D O E F G H x y I

1/

Ta có

sđ cung AC = sđ cung BC (1)

\(sđ\widehat{CFG}=\dfrac{1}{2}\left(sđcungBC+sđcungAE\right)\) (góc có đỉnh ở trong hình tròn) (2)

\(sđ\widehat{CHE}=\dfrac{1}{2}sđcungCAE=\dfrac{1}{2}\left(sđcungAC+sđcungAE\right)\) (góc nội tiếp) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{CFG}=\widehat{CHE}\)

Ta có

\(\widehat{CFG}+\widehat{EFG}=\widehat{EFC}=180^o\)

\(\Rightarrow\widehat{CHE}+\widehat{EFG}=180^o\)

=> EFGH là tứ giác nội tiếp (Tứ giác có hai góc đối bù nhau là tứ giác nội tiếp)

2/

sđ cung AC = sđ cung BC (4)

\(sđ\widehat{AGC}=\dfrac{1}{2}\left(sđcungAC+sđcungBH\right)\) (5) (góc có đỉnh ở trong hình tròn)

\(sđ\widehat{CHy}=\dfrac{1}{2}sđcungCBH=\dfrac{1}{2}\left(sđcungBC+sđcungBH\right)\) (6) (Góc giữa tiếp tuyến và dây cung)

Từ (4) (5) (6) \(\Rightarrow\widehat{AGC}=\widehat{CHy}\)

Mà AC = AG (gt) => tgACG cân tại A \(\Rightarrow\widehat{AGC}=\widehat{ACG}\)

\(\Rightarrow\widehat{ACG}=\widehat{CHy}\) mà 2 góc trên ở vị trí so le trong => xy//AC

 

 

 

 

 

 

 

 

6 tháng 10 2017

không biết

6 tháng 10 2017

Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [C, E] Đoạn thẳng k: Đoạn thẳng [D, E] Đoạn thẳng l: Đoạn thẳng [E, A] Đoạn thẳng m: Đoạn thẳng [E, B] Đoạn thẳng n: Đoạn thẳng [B, C] O = (4.35, -6.12) O = (4.35, -6.12) O = (4.35, -6.12) B = (12.58, -6.03) B = (12.58, -6.03) B = (12.58, -6.03) Điểm C: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, g Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm D: Giao điểm đường của c, g Điểm E: Điểm trên c Điểm E: Điểm trên c Điểm E: Điểm trên c Điểm M: Giao điểm đường của i, j Điểm M: Giao điểm đường của i, j Điểm M: Giao điểm đường của i, j

a) Do E thuộc đường tròn tâm O nên \(\widehat{CED}=90^o\)

Xét tứ giác MEDO có \(\widehat{MED}=\widehat{MOD}=90^o\) nên MEDO là tứ giác nội tiếp hay 4 điểm E, M, O , D cùng thuộc một đường tròn.

b) Ta có \(\widehat{AEB}=\widehat{CED}=90^o\) nên \(EA^2+EB^2=AB^2;EC^2+ED^2=CD^2\)

Vậy thì \(EA^2+EB^2+EC^2+ED^2=CD^2+AB^2=4R^2+4R^2=8R^2\)

c) Ta có ngay \(\Delta CMO\sim\Delta CDE\left(g-g\right)\Rightarrow\frac{CM}{CD}=\frac{CO}{CE}\)

Vậy thì \(CM.CE=CO.CD=R.2R=2R^2\)

d) Ta thấy \(\widehat{AOC}=\widehat{COB}=90^o\Rightarrow\widebat{AC}=\widebat{CB}\)

Vậy thì \(\widehat{AEC}=\widehat{CEB}\) (Hai góc nội tiếp cùng chắn một cung)

hay EC là phân giác góc \(\widehat{AEB}.\)

e) Ta thấy \(\widehat{MCB}=\widehat{MAE}\) (Hai góc nội tiếp cùng chắn cung EB)

Vậy nên \(\Delta MCB\sim\Delta MAE\left(g-g\right)\Rightarrow\frac{MC}{MA}=\frac{MB}{ME}\Rightarrow MA.MB=MC.ME\)