K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

các bạn giúp mình với , please !!!!!!!!!!!!!!!!!!!!!!!!!!!!

14 tháng 3 2015

bạn giải giúp mình nhé :)))

28 tháng 5 2017
Câu này bạn nào giải được không
17 tháng 6 2017

a, áp dụng t/c 2 tiếp tuyến cắt nhau suy ra góc bom =moa

xét tam giác cân OBAcó  bom =moa suy ra oh vg ab

tứ giác đó nt do tổng 2 góc đối 

b,cách mk là cm tam giác MEA đồng dạng vs MAF gg

17 tháng 6 2017

đầu tiên bn nối I vs H Ta có IH là đg trung bình trong tam giác kab

                                    =>IH// KB ,HAY GÓC IHA =CBA MÀ CBA =CEA =1/2 AC 

                                                          =>TỨ GIÁC IHAE nt suy ra góc HEA CỘNG GÓC HIA =180 ĐỘ

                                           GÓC HIA =BKA =90 ĐỘ 

                                   TỪ ĐÓ SUY RA GÓC HEA =90 ĐỘ  HAY GÓC HEA LÀ GÓC VUÔNG

20 tháng 7 2019

A B C O D E S F N M I

a) Bổ đề: Xét tam giác ABC cân tại A, một điểm M bất kì sao cho ^AMB = ^AMC. Khi đó MB = MC.

Bổ đề chứng minh rất đơn giản, không trình bày ở đây.

Áp dụng vào bài toán: Vì E là điểm chính giữa (BC nên EB = EC = ED => \(\Delta\)BED cân tại E

Ta có ^BAE = ^CAE (2 góc nội tiếp chắn hai cung bằng nhau) hay ^BAE = ^DAE

Áp dụng bổ đề vào \(\Delta\)BED ta được AB = AD. Khi đó AE là trung trực của BD => AE vuông góc BD

Lại có \(\Delta\)BAD ~ \(\Delta\)CFD (g.g). Mà AB = AD nên FD =FC. Từ đó EF vuông góc DC

Xét \(\Delta\)AEF có FD vuông góc AE (cmt), AD vuông góc EF (cmt) => D là trực tâm \(\Delta\)AEF (đpcm).

b) Gọi DN cắt EC tại I. Ta dễ thấy ^MDI = ^MDN = ^MBN = ^MBC = ^MEC = ^MEI

Suy ra bốn điểm D,E,M,I cùng thuộc một đường tròn => ^EMD = ^EID = 900

Nếu ta gọi MD cắt cung lớn BC của (O) tại S thì ^EMS chắn nửa (O) hay ES là đường kính của (O)

Mà E là điểm chính giữa cung nhỏ BC nên S là điểm chính giữa cung lớn BC

Do đó S là điểm cố định (Vì B,C cố định). Vậy MD luôn đi qua S cố định (đpcm).

18 tháng 3 2021

B C A H E Q F P D

a/

Ta thấy F và E đều nhìn BC dưới cùng 1 góc 90 độ nên E,F nằm trên đường tròn đường kính BC ta gọi là đường tròn (O')

=> B,F,E,C cùng nawmg trên một đường tròn

b/

Xét đường tròn (O) ta có

sđ \(\widehat{BQP}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BP (góc nội tiếp đường tròn) (1)

Xét đường tròn (O') ta có

sđ \(\widehat{BEF}=\) sđ \(\widehat{BCP}=\frac{1}{2}\) sđ cung BF (góc nội tiếp đường tròn) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BQP}=\widehat{BEF}\) => PQ//EF (Hai đường thẳng bị cắt bởi đường thẳng thứ 3 có hai góc ở vị trí đồng vị thì chúng // với nhau

c/ ta thấy F và D cùng nhìn BH dưới cùng 1 góc 90 độ nên BDHF là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{FDA}=\frac{1}{2}\) sđ cung FH (1)

Ta thấy D và E cùng nhìn AB đướ cùng 1 góc 90 độ nên ABDE là tứ giác nội tiếp

sđ \(\widehat{ABE}=\)sđ \(\widehat{ADE}=\frac{1}{2}\) sđ cung AE (2)

Mà \(\widehat{FDA}+\widehat{ADE}=\widehat{FDE}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\widehat{FDE}=2.\widehat{ABE}\left(dpcm\right)\)

27 tháng 2 2018

a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)

Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)

Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)

Suy ra \(\widehat{MIC}=\widehat{MBC}\)

Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.

b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)

\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)

Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)

Vậy nên \(FI.FM=FE.FD\)

c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)

Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)

Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.

Suy ra \(\widehat{FIQ}=90^o\)

Vậy thì P, T, M thẳng hàng.

d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)

Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.

Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.

Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).

25 tháng 2 2017

B O A C D K H E

a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp

b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)

Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)

=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)

c,  Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)

Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)

=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp

=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)

=> \(CE⊥BD\)(ĐPCM)

d, em xem lại xem có gõ sai đề không nhé

16 tháng 8 2018

Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất. 

Nhờ mọi người giải dùm e với.