Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B O A C D K H E
a, Xét tứ giác AKCH có: \(\widehat{AKC}+\widehat{AHC}=90+90=180\)=> tứ gác AKCH nội tiếp
b,Tứ giác AKCH nội tiếp => \(\widehat{HCK}=\widehat{HAD}\)(góc trong và góc ngoài đỉnh đối diện)
Mặt khác: \(\widehat{HAD}=\widehat{BCD}=\frac{1}{2}sđ\widebat{BD}\)
=> \(\widehat{BCD}=\widehat{ACD}\)=> CD là phân giác \(\widehat{KCB}\)
c, Tứ giác AKCH nội tiếp: => \(\widehat{CKE}=\widehat{CAH}\)
Mà: \(\widehat{CDB}=\widehat{CAH}=\frac{1}{2}sđ\widebat{BC}\)
=> \(\widehat{CKE}=\widehat{CDE}\)=> tứ giác CKDE nội tiếp
=> \(\widehat{CKD}+\widehat{CED}=180\Rightarrow\widehat{CED}=180-\widehat{CKD}=180-90=90\)
=> \(CE⊥BD\)(ĐPCM)
d, em xem lại xem có gõ sai đề không nhé
Câu d) Khi C di chuyển trên cung nhỏ̉ AB. Xác định vị trí C để CK.AD+CE.DB có giá trị lớn nhất.
Nhờ mọi người giải dùm e với.
Gọi M, N lần lượt là trung điểm của AB, CD.
Ta có: \(P=AB+CD=2AM+2CN=2\sqrt{R^2-OM^2}+2\sqrt{R^2-ON^2}\).
Ta dễ dàng chứng minh được \(OM^2+ON^2=OI^2\).
Do đó: \(P=2\left(\sqrt{R^2-OM^2}+\sqrt{R^2-ON^2}\right)\le2\sqrt{2\left(R^2-OM^2+R^2-ON^2\right)}=2\sqrt{2\left(2R^2-OI^2\right)}\).
Đẳng thức xảy ra khi và chỉ khi \(OM=ON\), tức AB tạo với OI một góc
A B C O I G J S K H L A' M N
a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900
Vậy I thuộc đường tròn đường kính OC cố định (đpcm).
b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB
Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).
c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC
Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)
Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.
d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.
Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)
Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).
A B C D E M J O I
a) Ta có :
\(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)
\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)
Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\) hay \(CD\perp DE\)
\(\Rightarrow DE//AB\)nên tứ giác ABED là hình thang cân
\(\Rightarrow AD=BE\)
Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)không đổi
b ) \(IB=IC=IM\)nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)
Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\)
Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\)( không đổi vì O,M cố định )
Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi.
Chúc bạn học tốt !!!
Bài 1 :
Áp dụng Cô - si ta có :
\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{\left(a+1\right)b^2}{b^2+1}\le\left(a+1\right)-\frac{\left(a+1\right)b^2}{2b}\)\(=\left(a+1\right)-\frac{ab+b}{2}\)
Tương tự ta cũng có : \(\frac{b+1}{c^2+1}\le\left(b+1\right)-\frac{bc+c}{2};\frac{c+1}{a^2+1}\le\left(c+1\right)-\frac{ca+a}{2}\)
Cộng vế theo vế ta được:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)\(\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{ab+bc+ca+3}{2}\)
Mặt khác ta có BĐT : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca\le3\)
Do đó : \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Bài 2 :
A B C D M N P Q O K I H
a) Ta có : \(MI=MA,QI=QD\)nên \(MQ\)là đường trung bình \(\Delta AID\)
\(\Rightarrow MQ//AD\)
Tương tự NP là đường trung bình của \(\Delta BIC\)
\(\Rightarrow NP//BC\)
Do đó : \(NMQ=BAD=NPQ\)nên tứ giác MPNQ nội tiếp
b ) Kẻ \(OH\perp AB\)tại H và \(OK\perp CD\)tại K
Ta có : \(AB\perp CD\)
\(\Rightarrow OHIK\)là hình chữ nhật
Do đó \(AB^2+CD^2=4\left(BH^2+CK^2\right)=4\left(R^2-OH^2+R^2-OK^2\right)\)
\(=4\left(2R^2-OI^2\right)\)
Diện tích tứ giác MPNQ là : \(\frac{MN.PQ}{2}=\frac{AB.CD}{8}\le\frac{\left(AB+CD\right)^2}{16}=\frac{2R^2-OI^2}{4}\)không đổi
GTLN của diện tích tứ giác MNPQ là : \(\frac{2R^2-OI^2}{4}\), khi đó \(AB=CD\)
Chúc bạn học tốt !!!
*Mình vẽ hình trên GeoGebra nên bạn vào thống kê mình xem*
Xét \(\Delta IDC\) và \(\Delta\)IAB có:
\(\widehat{DIC}=\widehat{AIB}\) (đối đỉnh)
\(\widehat{IDC}=\widehat{IAB}\) (cùng chắn cung BC)
Do đó \(\Delta IDC\)đồng dạng với \(\Delta\)IAB => \(\frac{ID}{IA}=\frac{IC}{IB}=\frac{CD}{AB}\left(1\right)\)
Tương tự ta có: \(\Delta\)IAD đồng dạng \(\Delta\)IBC => \(\frac{IA}{IB}=\frac{ID}{IC}=\frac{DA}{BC}\left(2\right)\)
Từ (1) và (2) ta có: \(\frac{ID}{IB}=\frac{ID}{IA}\cdot\frac{IA}{IB}=\frac{DA\cdot CD}{AB\cdot BC}\)
\(\Rightarrow\frac{ID+IB}{IB}=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\) hay \(BD=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\cdot IB\)
mặt khác ta có: \(\frac{IC}{IA}=\frac{IC}{IB}:\frac{IA}{IB}=\frac{BC\cdot CD}{AB\cdot DA}\Rightarrow\frac{IC+IA}{IA}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\)
\(\Rightarrow AC=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\)
Do đó: \(\frac{AC}{BD}=\left(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\right):\left(\frac{AB\cdot BC+DA\cdot CB}{AB\cdot BC}\cdot IB\right)\Rightarrow\frac{AC}{BD}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\)
Do đó:
\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(max\right)\Leftrightarrow\hept{\begin{cases}AC\left(max\right)\\BD\left(min\right)\end{cases}}\)<=> AC qua O và BD _|_ OI
\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(min\right)\Leftrightarrow\hept{\begin{cases}AC\left(min\right)\\BD\left(max\right)\end{cases}}\)<=> AC _|_OI vfa BD đi qua O