K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

A B C D E M J O I

a) Ta có : 

\(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)

\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)

Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\) hay \(CD\perp DE\)

\(\Rightarrow DE//AB\)nên tứ giác ABED là hình thang cân

\(\Rightarrow AD=BE\)

Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\)không đổi

b ) \(IB=IC=IM\)nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)

Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\)

Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\)( không đổi vì O,M cố định )

Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi.

Chúc bạn học tốt !!!

1 tháng 3 2020

a ) Ta co \(AC^2+BD^2=MA^2+MC^2+MB^2+MD^2\)

\(=\left(MA^2+MD^2\right)+\left(MB^2+MC^2\right)=AD^2+BC^2\)

Kẻ đường kính CE ta có \(\widehat{CDE}=90^0\)

Hay \(CD\perp DE\)

\(\Rightarrow DE\)// \(AB\) nên tứ giác ABED là hình thang cân

\(\Rightarrow AD=BE\)

Ta có : \(AD^2+BC^2=BE^2+BC^2=CE^2=4R^2\) không dổi

b ) Vì IB = IC = IM nên \(IO^2+IM^2=OC^2-IM^2+IM^2=R^2\)

Gọi J là trung điểm của MO . Áp dụng công thức đường trung tuyến trong \(\Delta IMO\) Ta có : \(IJ=\sqrt{\frac{IO^2+IM^2}{2}-\frac{MO^2}{4}}=\sqrt{\frac{R^2}{2}-\frac{MO^2}{4}}\) ( không dổi vì OM cố định ) Do đó I chạy trên đường tròn tâm J bán kính IJ không đổi Chúc bạn học tốt !!
1 tháng 3 2020

A C I B M J O D E

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

6 tháng 2 2018

a) Gọi I, K lần lượt là trung điểm của AE và BC.

Ta có : \(EB^2=\left(BK-EK\right)^2;EC^2=\left(KC+EK\right)^2\)

\(\Rightarrow EB^2+EC^2=2\left(BK^2+EK^2\right)=2\left(BO^2-OK^2+OE^2-OK^2\right)\)

\(=2\left(R^2+r^2\right)-4OK^2\)

\(AE^2=4AI^2=4\left(r^2-OI^2\right)\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+6r^2-4\left(OI^2+OK^2\right)\)

Mà OIEK là hình chữ nhật nên \(OI^2+OK^2=OE^2=r^2\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+2r^2\) không đổi.

b) Giả sử EO giao với AK tại J.

Vì IOEK là hình chữ nhật nên OK song song và bằng EI. Vậy nên OK song song và bằng một nửa AE.

Do đó \(\frac{JE}{JO}=\frac{AJ}{JK}=\frac{AE}{OK}=2\)

Vì OE cố định nên J cố định; Vì AK là trung tuyến của tam giác ABC nên J là trọng tâm tam giác ABC

Suy ra J thuộc MC.

Vậy MC đi qua J cố định.

c) Vì AK = 3/2AJ nên H trùng K.

Do đó OH vuông góc BC. Suy ra H thuộc đường tròn đường kính OE.

4 tháng 3 2018

cảm ơn bạn nhiều