K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

tự kẻ hình:3333

a) vì BE là phân giác của QBA=> B1=B2=QBA/2

vì BD là phân giác của ABC=> B3=B4=ABC/2

ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)

trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ

=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)

=> BE vuông góc với AQ, BD vuông góc với AP

b)vì AEBD là hcn => AE=BD, 

xét tam giác BEQ và tam giác BEA có

B1=B2(gt)

BE chung

BEQ=BEA(=90 độ)

=> tam giác BEQ= tam gáic BEA(gcg)

=> AE=EQ ( hai cạnh tương ứng)

ta có DBP+EBQ= 90 độ( EBD= 90 độ)

VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ

=> DBP=EQB (=90 độ-EBQ)

xét tam giác BEQ và tam giác PDB có

EQ=BD(=AE)

BEQ=PDB(=90 độ)

DBP=EQB(cmt)

=> tam giác BEQ= tam gáic PDB(gcg)

=> QB=PB ( hai cạnh tương ứng)

=> B là trung điểm của PQ

c) xét tam giác AED và tam giác DBA có 

AE=BD(cmt)

DAE=BDA(=90 độ)

AD chung

=> tam giác AED= tam giác DBA (cgc)

=> AB=DE( hai cạnh tương ứng)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
7 tháng 3 2019

a. Xét \(\Delta\)BDA vuông và \(\Delta\)BEC vuông có :

AB = BC (vì tam giác ABC cân)

góc B chung

=> \(\Delta\)BDA = \(\Delta\)BEC (cạnh huyền - góc nhọn)

=> BD = BE (2 cạnh tương ứng)

b.Vì \(\Delta\)BDA = \(\Delta\)BEC (chứng minh trên)

=> góc BAD = góc BCE (2 góc tương ứng)

ta có : góc BAD + góc DAC = góc BAC

góc BCE + góc ECA = góc BCA

mà góc BAD = góc BCE (cmt)

BAC = BCA (cmt)

=>góc DAC = góc ECA

=> \(\Delta\)AIC cân tại I

=>AI = IC (tính chất)

Xét \(\Delta\)BIA và \(\Delta\)BIC có :

BI chung

AB = BC (cmt)

AI = IC (cmt)

=> \(\Delta\)BIA = \(\Delta\)BIC (cạnh.cạnh.cạnh)

=> góc ABI = góc CBI ( 2 góc tương ứng )

=> BI là tia phân giác của góc ABC

c.gọi giao điểm của AI và ED là M

Xét \(\Delta\)BME và \(\Delta\)BMD có :

BE = BD (cm câu a)

BM chung

góc EBM = góc DBM (cm câu b)

=> \(\Delta\)BME = \(\Delta\)BMD (cạnh.góc.cạnh)

=>góc BME = góc BMD ( 2 góc tương ứng)

mà góc BME + góc BMD = 180o ( 2 góc kề bù)

=> góc BME = 90o

gọi giao điểm của BI và AC là N

Xét \(\Delta\)BNA và \(\Delta\)BNC có

AB = AC (cmt)

góc ABN = góc CBN (cm câu b)

AN chung

=> \(\Delta\)BNA = \(\Delta\)BNC (cạnh.góc.cạnh)

=> góc BNA = góc BNC ( 2 góc tương ứng)

mà góc BNA + góc BNC = 180o ( 2 góc kề bù)

=> góc BNA = 90o

Xét \(\Delta\)BME và \(\Delta\)BNA có

góc EBM + góc BME + góc BEM = góc ABN + góc BNA + góc BAN = 180o

mà góc BME = góc BNA (= 90o)

=>góc BEM = góc BAN

mà 2 góc này lại ở vị trí đồng vị

=> ED//AC

d.Xét \(\Delta\) vuông BKA và \(\Delta\) vuông BKC có :

BK chung

AB = BC (cmt)

=> \(\Delta\)BKA = \(\Delta\)BKC (cạnh huyền - cạnh góc vuông)

=> góc ABK = góc CBK ( 2 góc tương ứng )

=> BK là tia phân giác của góc ABC

mà BI cũng là tia phân giác của góc ABC (cm câu b)

=> BK trùng với BI

hay B,I,K thẳng hàng

sorry vì mình làm hơi dài nha vui

1 tháng 2 2018

Câu hỏi của Nguyễn Thùy Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

4 tháng 3 2020

Bài 1:

+ Vì E là hình chiếu của B trên \(AM\left(gt\right)\)

=> \(BE\perp AM.\)

=> \(\widehat{BEM}=90^0\)

=> \(\Delta BEM\) vuông tại \(E.\)

=> Cạnh huyền \(BM\) là cạnh lớn nhất (tính chất tam giác vuông).

=> \(BM>BE\) (1).

+ Vì F là hình chiếu của C trên \(AM\left(gt\right)\)

=> \(CF\perp AM.\)

=> \(\widehat{CFM}=90^0\)

=> \(\Delta CFM\) vuông tại \(F.\)

=> Cạnh huyền \(CM\) là cạnh lớn nhất (tính chất tam giác vuông).

=> \(CM>CF\) (2).

Cộng theo vế (1) và (2) ta được:

\(BM+CM>BE+CF\)

\(BM+CM=BC\left(gt\right).\)

=> \(BC>BE+CF\)

Hay \(BE+CF< BC\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 4 nè e :)) Phải nói rằng bài của em quá khó luôn !!

Cho tam giác ABC, kẻ AH, BK vuông góc với BC, AC tại H, K, tìm số đo các góc A, B, C - minh dương

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA. a) Chứng minh EH \(\perp\)BC . b) Chứng minh BE là đường trung trực của AH. c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC. d) Chứng minh AH // KC. e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng. 2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm. Tìm độ dài...
Đọc tiếp

1. Cho tam giác ABC có \(\widehat{A}\); AB < AC ; phân giác BE, E \(\in\) AC . Lấy điểm H thuộc cạnh BC sao cho BH = BA.
a) Chứng minh EH \(\perp\)BC .
b) Chứng minh BE là đường trung trực của AH.
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC.
d) Chứng minh AH // KC.
e) Gọi M là trung điểm của KC. Chứng minh ba điểm B, E, M thẳng hàng.

2. a) Cho tam giác MNP vuông tại N biết MN = 20cm; MP = 25cm.
Tìm độ dài cạnh NP?
b) Cho tam giác DEF có DE = 10 cm; DF = 24cm; EF = 26cm. Chứng minh tam giác DEF vuông?

3. Cho \(\Delta\)ABC cân tại A có AB = 5cm, BC = 6cm.
Kẻ AD vuông góc với BC (D \(\in\) BC ).
a) Tìm các tam giác bằng nhau trong hình.
b) Tính độ dài AD ?

4. Cho tam giác ABC vuông tại A, có \(\widehat{B}\) và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: \(\Delta\)ABD = \(\Delta\)EBD.
b) Chứng minh: \(\Delta\)ABE là tam giác đều.
c) Tính độ dài cạnh BC.

5. Cho góc xOy .Trên Ox lấy điểm A , trên Oy lấy điểm B sao cho
OA = OB . Qua A kẻ đường thẳng a vuông góc với Ox ; qua B kẻ đường thẳng b vuông góc với Oy . Hai đường thẳng a và b cắt nhau tại C . Chứng minh rằng :
a ) \(\Delta\)OAC = \(\Delta\)OBC.

b) CA = CB
c) OC là phân giác của góc xOy .

6. Cho \(\Delta\)ABC cân tại A, có \(\widehat{B}\) = 700 . Tính độ \(\widehat{A}\) ?

7. Cho \(\Delta\)ABC cân tại A, AB = AC = 5 cm; BC = 8 cm. Kẻ AH \(\perp\) BC (H \(\in\)BC)
a) Chứng minh HB = HC
b) Tính AH.
c) Kẻ HD \(\perp\) AB (D \(\in\)AB); HE \(\perp\) AC (E \(\in\)AC). CMR: \(\Delta\)HDE là tam giác cân.

1
12 tháng 5 2018

a. Xét tam giác BAE và tam giác BHE có:

BA=BH

BE chung

góc ABE=HBE ( phân giác BE )

=> tam giác BAE = tam giác BHE (c.g.c)

=> góc BAE=BHE ( 2 góc tương ứng)

mà góc BAE= 90 độ

=> góc BHE=90 độ => EH ⊥BC .

b.tam giác BAE = tam giác BHE => BA=BH và AE=EH

=> BE là đường trung trực của AH

c.Xét tam giác AKE và tam giác HCE có:

góc AEK=HEC ( đối đỉnh)

AE=EH

góc EAK=EHC (= 90 độ)

=> tam giác AKE = tam giác HCE (g.c.g)

=> EK=EC

d.Có: BA=BH => tam giác BAH cân tại B

=> góc BHA= 180 độ - góc HBA / 2 (1)

Có: BC=BH+HC

BK=BA+AK

mà BH=BA

HC=AK ( do tam giác AKE = tam giác HCE )

=> BC=BK => tam giác BCK cân tại B

=> góc BCK=180 độ - góc HBA /2 (2)

Từ (1) (2) => góc BHA=BCK

mà 2 góc ở vị trí đồng vị

=> AH//CK

e. Xét tam giác BMC và tam giác BMK có:

BC=BK

CM=KM ( M là trung điểm của KC )​

BM chung

=> tam giác BMC = tam giác BMK (c.c.c)

=> góc MBC=MBK => BM là tia phân giác của góc B

mà BE cũng là phân giác của góc B

=> ba điểm B, E, M thẳng hàng.

24 tháng 3 2020

Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.

a,Chứng minh AB = AC.

b,Tính số đo góc CAO

c,Tam giác ABC là tam giác gì ? Vì sao ?

d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO

e,Tính số đo góc CBO?

g,Chứng minh AO là đường trung trực của BC?

Các bạn giúp mình với,huhukhocroi