K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

b: Ta có: ACBD là hình bình hành

nên AD//BC

c:

Ta có: CE+EB=CB

FD+AF=AD

mà CB=AD

và CE=FD

nên EB=AF

Xét tứ giác EBFA có 

EB//AF

EB=AF

Do đó: EBFA là hình bình hành

Suy ra:EF và BA cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AB

nên O là trung điểm của FE

Xét ΔAOC vuông tại A và ΔBOD vuông tại B có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

Do đó: ΔAOC=ΔBOD

Suy ra: AC=BD

Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

24 tháng 2 2020

Câu hỏi của kakemuiki - Toán lớp 7 - Học toán với OnlineMath

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 5 2018

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAOEBO (cgv - gn )

OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCDOED (cgv - cgv )

CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

CD=AC+BD