K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAOC vuông tại A và ΔBOD vuông tại B có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

Do đó: ΔAOC=ΔBOD

Suy ra: AC=BD

Xét tứ giác ACBD có 

AC//BD

AC=BD

Do đó: ACBD là hình bình hành

Suy ra: AD=BC

12 tháng 3 2020

x C A O B K y D

Gọi K là giao điểm của CO và BD

Xét \(\Delta\)AOC và \(\Delta\)BOK có :

AO = BO(gt)

\(\widehat{OAC}=\widehat{OBK}\left(=90^0\right)\)

\(\widehat{O}\)chung

=> \(\Delta\)AOC = \(\Delta\)BOK(g.c.g)

=> OC = OK(hai cạnh tương ứng)

     AC = BK(hai cạnh tương ứng)

Xét \(\Delta\)COD và \(\Delta\)KOD có :

CO = KO(gt)

\(\widehat{OCD}=\widehat{OKD}\left(=90^0\right)\)

OD cạnh chung

=> \(\Delta\)COD = \(\Delta\)KOD(c.g.c)

=> CD = KD(hai cạnh tương ứng)

Do đó : CD = DB + BK = DB + AC

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 5 2018

Bạn tự vẽ hình nha

Câu a

Chứng minh : Kẻ OC cắt BD tại E

Xét ΔCAO và ΔEBO có :

ˆA=^OBE (=1v)

AO=BO (gt)

^COA=^BOE (đối đỉnh)

⇒ΔCAOEBO (cgv - gn )

OC=OE ( hai cạnh tương ứng )

và AC=BE ( hai cạnh tương ứng )

Xét ΔOCD và ΔOED có :

OC=OE (c/m trên )

^COD=^DOE ( = 1v )

OD chung

⇒ΔOCDOED (cgv - cgv )

CD=DE (hai cạnh tương ứng )

mà DE = BD + BE

và AC = BE ( c/m trên )

CD=AC+BD