Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ tia CO cắt tia đối của tia By tại E
Xét tam giác vuông AOC và tam giác vuông BOE có :
AO = OB ( gt )
AOC = BOE ( 2 góc đối đỉnh )
\(\implies\) tam giác vuông AOC = tam giác vuông BOE ( cạnh huyền - góc nhọn )
\(\implies\) AC = BE ( 2 cạnh tương ứng )
Xét tam giác vuông DOC và tam giác vuông DOE có :
OD chung
OC = OE ( tam giác vuông AOC = tam giác vuông BOE )
\(\implies\) tam giác vuông DOC = tam giác vuông DOE ( 2 cạnh góc vuông )
\(\implies\) CD = ED ( 2 cạnh tương ứng )
Mà ED = EB + BD
\(\implies\) ED = AC + BD
\(\implies\) CD = AC + BD
b) Xét tam giác DOE vuông tại O có :
OE2 + OD2 = DE2 ( Theo định lý Py - ta - go )
Xét tam giác BOE vuông tại B có :
OB2 + BE2 = OE2 ( Theo định lý Py - ta - go ) ( * )
Xét tam giác BOD vuông tại B có :
OB2 + BD2 = OD2 ( Theo định lý Py - ta - go ) ( ** )
Cộng ( * ) với ( ** ) vế với vế ta được :
OE2 + OD2 = 2. OB2 + EB2 + DB2
Mà OE2 + OD2 = DE2 ( cmt )
\(\implies\) DE2 = 2. OB2 + EB2 + DB2
= 2. OB2 + EB . ( DE - BD ) + DB . ( DE - BE )
= 2. OB2 + EB . DE - EB . BD + DB . DE - DB . BE
= 2. OB2 + ( EB . DE + DB . DE ) - 2 . BD . BE
= 2. OB2 + DE . ( EB + DB ) - 2 . BD . BE
= 2. OB2 + DE2 - 2 . BD . BE
\(\implies\) 2. OB2 - 2 . BD . BE = 0
\(\implies\) 2. OB2 = 2 . BD . BE
\(\implies\) OB2 = BD . BE
Mà BE = AC ( cmt ) ; OB = AB / 2 ( gt )
\(\implies\) AC . BD = ( AB / 2 )2
\(\implies\) AC . BD = AB2 / 4
CM tg OAC đồng dạng tg OBD ( g - g )
=> OA.OB = AC.BD
mà OA = OB
=> OA\(^2\)= AC.BD
tg OAC vuông tại A có :
OC2 = AC\(^2\)+ OA2
tg OBD vuông tại B có :
OD2 = BD2 + OB2
tg OBD vuông tại O có :
CD2 = OC2 + OD2 = AC\(^2\)+ OA2 + BD2 + OB2 = AC2 + 2OA2 + BD2
= AC2 + 2AC.BD + BD2
= ( AC + BD ) 2
=> CD = AC + BD
CHO TICK NHA !
ủng hộ mk nha mọi người
Bạn tự vẽ hình nha
Câu a
Chứng minh : Kẻ OC cắt BD tại E
Xét ΔCAO và ΔEBO có :
ˆA=^OBE (=1v)
AO=BO (gt)
^COA=^BOE (đối đỉnh)
⇒ΔCAO=ΔEBO (cgv - gn )
⇒OC=OE ( hai cạnh tương ứng )
và AC=BE ( hai cạnh tương ứng )
Xét ΔOCD và ΔOED có :
OC=OE (c/m trên )
^COD=^DOE ( = 1v )
OD chung
⇒ΔOCD=ΔOED (cgv - cgv )
⇒CD=DE (hai cạnh tương ứng )
mà DE = BD + BE
và AC = BE ( c/m trên )
⇒CD=AC+BD