K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

a) Ta có \(AB^2+AC^2=8^2+6^2=100=BC^2\)

=> Tam giác ABC cân tại A (định lí Py-ta-go đảo)

b) Áp dụng định lí Py-ta-go trong tam giác ABD vuông tại A có

\(BD^2=AB^2+AD^2\)

\(BD^2=8^2+1^2=65\)

=> \(BD=\sqrt{65}\)

10 tháng 5 2019

Có câu b hông?T.T

9 tháng 5 2019

tam giác ABC vuông tại  A (gt)

=> AB^2 + AC^2 = BC^2 (định lý Pytago)

mà AB = 6; BC = 10

=> 6^2 + AC^2 = 10^2

=> AC^2 = 100 - 36

=> AC^2 = 64

=> AC = 8 do AB > 0 

vậy_

19 tháng 4 2020

Cho tam giác ABC vuông tại A có AB=6cm,BC=10cm

a.Tính độ dài cạnh AC và so sánh các góc của tam giác ABC

b.Trên tia đối AB lấy điểm D sao cho AD=AB.Gọi K là trung điểm của cạnh BC,đường thẳng DK cắt AC tại M.Chứng minh BC=CD và tính độ dài đoạn thẳng AM

c.Đường trung trực d của đoạn thẳng ac cắt đường thẳng DC tại Q.Chứng minh ba điểm B,M,Q thẳng hàng.

giải : 

tam giác ABC vuông tại  A (gt)

=> AB^2 + AC^2 = BC^2 (định lý Pytago)

mà AB = 6; BC = 10

=> 6^2 + AC^2 = 10^2

=> AC^2 = 100 - 36

=> AC^2 = 64

=> AC = 8 do AB > 0 

vậy ...

19 tháng 4 2019

a, áp dụng định lí py-ta-go ta có:

            \(BC^2\)=\(AB^2+AC^2\)

=>    \(AC^2=BC^2-AB^2\)

=>    \(AC^2=100-36\)

=>    \(AC^2=64\)cm => AC=8 cm

vậy AC=8 cm

vì BC>AC>AB(10cm>8cm>6cm)

=> \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)(góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm

b, Xét 2 t.giác vuông BCA và DCA có:

               AB=AD(gt)

              AC cạnh chung

=> \(\Delta\)BCA=\(\Delta\)DCA(cạnh góc vuông-cạnh góc vuông)

=> BC=DC(2 cạnh tương ứng)

=>t.giác BCD cân tại C (đpcm)

19 tháng 4 2019

c, xét t.giác BCD : A là trung điểm BD, K là trung điểm của BC, AC và DK cắt nhau tại M

=> M là trọng tâm của \(\Delta\)BCD => MC=\(\frac{2}{3}\)AC(tính chất 3 đường trung tuyến)

=> MC=\(\frac{2}{3}\).8\(\approx\)5,3 cm

vậy MC\(\approx\)5,3 cm

25 tháng 4 2020

\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)