K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=8cm

Xét ΔCBD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBD cân tại C

hay CB=CD

Xét ΔCBD có 

DK là đường trung tuyến

CA là đường trung tuyến

DK cắt CA tại M

Do đó: M là trọng tâm 

=>AM=AC/2=8/3(cm)

b: Xét ΔCAD có

G là trung điểm của AC

GQ//AD

Do đó: Q là trung điểm của CD

Vì M là trọng tâm của ΔCDB nên B,M,Q thẳng hàng

10 tháng 6 2020

Tự vẽ hình nha !!!

a) Áp dụng định lý Py-ta-go ta có 

AB2 + AC2 = BC2

=> 82 + 62 = BC2

=> BC = 10 cm

b) Ta có BA = AD

=> AC là trung tuyến của BD

Vì \(AC\Omega BK=\left\{E\right\}\)

=> E là trọng tâm của tam giác BDC

=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm

=> EC = 4 cm ; AE = 2 cm

c) Xét tam giác BAC và tam giác DAC có

\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)

=> BC = DC (cạnh tương ứng)

25 tháng 4 2020

\(\theta\eta\delta∄\underrightarrow{ }\overrightarrow{ }|^{ }_{ }\orbr{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\hept{\begin{cases}\\\end{cases}}\frac{ }{ }\sqrt[]{}\sqrt{ }\forall\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét tứ giác ABEC có 

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB//EC và AB=EC

c: Xét ΔBCD có 

CA là đường cao

CA là đường trung tuyến

Do đó: ΔBCD cân tại C

d: Xét ΔOBC có

OM là đường cao

OM là đường trung tuyến

Do đó: ΔOBC cân tại O

Suy ra: OB=OC(1)

Xét ΔOBD có
OA là đường cao

OA là đường trung tuyến

Do đó: ΔOBD cân tại O

Suy ra: OB=OD(2)

Từ (1) và (2) suy ra OB=OC=OD

hay O cách đều ba đỉnh của ΔBDC

a) Ta có: AC2+BC2=82+152=289

               AB2=172=289

=> AC2+BC2=AB2

=> \(\Delta ABC\)vuông tại C (theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có \(\Delta ACD\)vuông tại C

=> AC2+DC2=AD2  

= 82+62= 100

=> AD=\(\sqrt{100}\)=10(cm)

=> Chu vi \(\Delta ABD\)là:

AD+AB+DC+CB=10+6+15+17=48(cm)

Vậy....