K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Bài này cũng ko khó, bạn chú ý nhé !!

Có: a1, a2, a3, ....., a2020 có tổng là 20192020

=> a1+ a2+ a3 +...+  a2020 chia hết cho 3

Áp dụng bổ đề x^3-x chia hết cho 3

=> a1  ^3 -a1   chia hết cho 3

 a2 mũ 3 - a2 chia hết cho 3

.... 

a2019^3-a2019 chia hết cho 3

=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 - (a1+a2+...+a^2019) chia hết cho 3

Có a1, a2, a3, ....., a2020 chia hết cho 3

=> a1 mũ 3 + a2 mũ 3 + ...+a 2019 mũ 3 chia hết cho 3

=> đpcm

Cm bổ đề x^3-x chia hết cho 3 nhé

=x(x-1)(x+1). Do là tích 3 số nguyên liên tiếp => Chia hết cho 3 

12 tháng 11 2019

   Xin lỗi các bạn:

CMR : a13   + a2 +a33 +....+ a20203 chia hết cho 3

21 tháng 4 2016

Ai giúp tớ với, nhanh lên gấp lắm :(

21 tháng 4 2016

Ta sẽ chứng minh:

\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)

Đẳng thức trên có thể chứng minh bằng quy nạp.

Áp dụng ào bài toán cho ra cả phần a và b.

21 tháng 9 2016

ai chuk?

4 tháng 1 2017

ta có 20132014= a1 + a2 +…+a2013

Đặt S = a13  + a2 + ….+ a20133

        S - 20132014= a13  + a2 + ….+ a20133 - (a+ a2 +…+a2013)

                                = (a1 - a1) +  (a1 - a1) +...+  (a1 - a1)

ta có bài toán phụ sau:

   x3 - x = x(x2 - 1) = x(x-1)(x+1) (vì x2 - 1 = (x+1)(x-1))

Ta thấy x(x-1)(x+1) là 3 số tự nhiên liên tiếp nên tích đó phải chia hết 

Vậy x3 - x chia hết cho 3

Từ kết luận của bài toán phụ trên mà ta suy ra được mỗi hiệu của tổng trên đều chia hết cho 3 nên tổng đó chia hết cho 3

Suy ra S và 20132014 khi chia cho 3 thì cùng có số dư như nhau

Mà 2013 chia hết cho 3 nên 20132014 chia hết cho 3

Vậy S chia hết cho 3 hay a13  + a2 + ….+ a2013chia hết cho 3( điều phải chứng minh)

23 tháng 4 2020

Với a\(\in\)Z thì a3-a=(a-1)a(a+1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 2,3

Mà (2,3)=1 => a3-a chia hết cho 6

=> S-P=(a13-a1)+(a23-a2)+....+(an3-an) chia hết cho 6

Vậy S chia hết cho 6 <=> P chia hết cho 6

28 tháng 5 2017

Vì 20162017 chia hết cho 3 nên a1 +a2 + ... +a2017 chia hết cho 3.

Mặt khác với mỗi số a bất kì thì a3 và a luôn có cùng số dư khi chia cho 3.

Kết hợp hai điều trên ta có a13 + a23 + .... + a32017 chia hết cho 3.

3 tháng 11 2019

@Akai Haruma