\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

áp dùng BDT cô si chúa Pain có

\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\Rightarrow xy\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2.\)

mà \(\frac{1}{x^2}+\frac{1}{y^2}=\frac{1}{2}\)

\(\Rightarrow\frac{xy}{2}\ge\Rightarrow xy\ge4\)

b)

áp dụng BDT cô si ta có

\(x+y\ge2\sqrt{xy}\)

lấy từ câu A ta có \(xy\ge4\) " câu a"

suy ra

\(x+y\ge2\sqrt{4}=4\)

27 tháng 1 2021

Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:

 \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

11 tháng 5 2017

1 thách dám tích

17 tháng 5 2017

\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{1}{2xy}\\ =\frac{1}{4}+\frac{1}{2xy}\ge\frac{1}{4}+\frac{1}{8}=\frac{3}{8}\)

Dấu = xảy ra khi x=y=2

DD
5 tháng 2 2021

\(\frac{1}{x^2}+\frac{1}{9y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{9y^2}}=\frac{2}{3xy}=\frac{2}{3}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2}=\frac{1}{9y^2}\\xy=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{3}\\y=\frac{1}{\sqrt{3}}\end{cases}}\).

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

NV
17 tháng 5 2020

\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}\)

\(P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xy}}+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)

\(P_{min}=11\) khi \(x=y=\frac{1}{2}\)