\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\ge11\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

Áp dụng BĐT Cauchy và Cauchy - Schwarz ta có:

 \(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\)

\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{4xy\cdot\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{4}{\left(x+y\right)^2}+2+\frac{5}{1^2}=4+2+5=11\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

19 tháng 9 2019

Áp dụng BĐT Cauchy cho 2 số không âm, ta được:

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\ge x^2+y\)

\(=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x^2.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\sqrt[3]{\frac{4}{4}}=3.1=3\)

18 tháng 10 2016

Ta có:

\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Rightarrow\sqrt{\frac{2}{xy}}\le1\Rightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\)\(\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\)(Đpcm0

Dấu = khi x=1;y=2

5 tháng 12 2017

bài này esay thôi:

ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)

Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)

\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)

Ta có:

\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)

\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)

Dấu = xay ra khi \(x=y=z=1\)

5 tháng 12 2017

Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?

29 tháng 2 2020

\(VT=\left(\frac{1}{x^3+y^3+xy\left(x+y\right)}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^3+y^3+xy\left(x+y\right)+2xy\left(x+y\right)}+2+\frac{5}{\left(x+y\right)^2}=11\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

1 tháng 3 2020

Ta có:

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{1}{a+b}\) với a,b dương

Do x+y=1 nên ta có:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

Ta có:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Ta sử dung bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)thì \(4xy+\frac{1}{4xy}=\frac{4xy}{1}+\frac{1}{4xy}\ge2\)

Mặt khác 

\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)Nên ta suy ra:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\ge4+2+5=11\)

Dấu "=" xảy ra khi và chỉ khi x=y=\(\frac{1}{2}\)

18 tháng 10 2016

ngu ngưoi viet cai de cung sai

19 tháng 9 2019

Ta có: \(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)

\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\)

\(\ge x^2+y=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\left(đpcm\right)\)

Dấu "="\(\Leftrightarrow x=1,y=2\)