K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\hept{\begin{cases}a+ab+b=3\\b+bc+c=8\\c+ca+a=15\end{cases}}\)    \(\Leftrightarrow\)\(\hept{\begin{cases}a+ab+b+1=4\\b+bc+c+1=9\\c+ca+a+1=16\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+1\right)\left(b+1\right)=4\\\left(b+1\right)\left(c+1\right)=9\\\left(c+1\right)\left(a+1\right)=16\end{cases}}\) \(\left(1\right)\)

Nhân vế với vế  \(\Rightarrow\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\right]^2=\left(24^2\right)\)

                         \(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=24\)\(\left(2\right)\)

Chia vế với vế của \(\left(2\right)\)cho lần lượt các pt của \(\left(1\right)\), ta được : 

\(\hept{\begin{cases}a+1=\frac{8}{3}\\b+1=\frac{3}{2}\\c+1=6\end{cases}}\) \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{5}{3}\\b=\frac{1}{2}\\c=5\end{cases}}\)

\(\Rightarrow a+b+c=\frac{43}{6}\)

Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

5 tháng 3 2020

Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

NV
22 tháng 3 2021

Đề đúng không em nhỉ?

Đề bài thế này vẫn tính được a;b;c, nhưng số rất xấu (căn thức, lớp 7 chưa học)

Biểu thức thứ hai: \(b+bc+c=5\) phải là \(b+bc+c=8\) hoặc 3; 15; 24; 35; 48... gì đó mới hợp lý, nghĩa là cộng thêm 1 phải là 1 số chính phương

25 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{2017c-a-b}{c}=\frac{2017b-a-c}{b}=\frac{2017a-b-c}{a}=\frac{\left(2017c-a-b\right)+\left(2017b-a-c\right)+\left(2017a-b-c\right)}{a+b+c}=\frac{2015.\left(a+b+c\right)}{a+b+c}=2015\)

\(\frac{2017c-a-b}{c}=2015\)\(\Rightarrow2017c-a-b=2015c\)\(\Rightarrow2c=a+b\)( 1 )

\(\frac{2017b-a-c}{b}=2015\)\(\Rightarrow2017b-a-c=2015b\)\(\Rightarrow2b=a+c\)( 2 )

\(\frac{2017a-b-c}{a}=2015\)\(\Rightarrow2017a-b-c=2015a\)\(\Rightarrow2a=b+c\)( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)

Vậy A = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right).\left(1+1\right).\left(1+1\right)=2^3=8\)

18 tháng 3 2020

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\left(vì\text{ a;b;c dương}\right)\)

\(\Rightarrow a=b=c\Rightarrow\frac{a^2+b^2+c^2}{a^2b+b^2c+c^2a}=\frac{3a^2}{3a^3}=\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

14 tháng 1 2019

Đề sai

Ta có : \(\hept{\begin{cases}a+3b=8\\2a+3c=7\end{cases}}\Rightarrow\left(a+3b\right)+\left(2a+3c\right)=8+7\)

\(\Leftrightarrow a+3b+2a+3c=15\)

\(\Leftrightarrow\left(2a+a\right)+3b+3c=15\)

\(\Leftrightarrow3a+3b+3c=15\)

\(\Leftrightarrow3\left(a+b+c\right)=15\)

\(\Leftrightarrow a+b+c=15\div3\)

\(\Leftrightarrow a+b+c=5\)

14 tháng 1 2019

Đề đúng đấy ạ :)))