K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{2017c-a-b}{c}=\frac{2017b-a-c}{b}=\frac{2017a-b-c}{a}=\frac{\left(2017c-a-b\right)+\left(2017b-a-c\right)+\left(2017a-b-c\right)}{a+b+c}=\frac{2015.\left(a+b+c\right)}{a+b+c}=2015\)

\(\frac{2017c-a-b}{c}=2015\)\(\Rightarrow2017c-a-b=2015c\)\(\Rightarrow2c=a+b\)( 1 )

\(\frac{2017b-a-c}{b}=2015\)\(\Rightarrow2017b-a-c=2015b\)\(\Rightarrow2b=a+c\)( 2 )

\(\frac{2017a-b-c}{a}=2015\)\(\Rightarrow2017a-b-c=2015a\)\(\Rightarrow2a=b+c\)( 3 )

Từ ( 1 ), ( 2 ) và ( 3 ) \(\Rightarrow a=b=c\)

Vậy A = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right).\left(1+1\right).\left(1+1\right)=2^3=8\)

8 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a+b-2017c}{c}=\frac{b+c-2017a}{a}=\frac{c+a-2017b}{b}\)

\(=\frac{a+b-2017c+b+c-2017a+c+a-2017b}{a+b+c}=\frac{-2015\left(a+b+c\right)}{a+b+c}=-2015\)

Do đó : 

\(\frac{a+b-2017c}{c}=-2015\)\(\Leftrightarrow\)\(a+b=2c\) \(\left(1\right)\)

\(\frac{b+c-2017a}{a}=-2015\)\(\Leftrightarrow\)\(b+c=2a\) \(\left(2\right)\)

\(\frac{c+a-2017b}{b}=-2015\)\(\Leftrightarrow\)\(c+a=2b\) \(\left(3\right)\)

Thay (1), (2) và (3) vào \(B=\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}\) ta được : 

\(B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=\frac{8abc}{abc}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

12 tháng 4 2019

3/Câu hỏi của không tên - toán 8 :)

12 tháng 4 2019

bạn nào xàm dữ :((

24 tháng 3 2018

2017/2 ( áp dụng tích chất dãy tỉ số bằng nhau)

7 tháng 10 2017

b) Ta có: [tex]\frac{a^{2} + c^{2}}{b^{2} + a^{2}}[/tex]= [tex]\frac{bc + c^{2}}{b^{2} + bc}= \frac{c(b +c)}{b(b + c)}= \frac{c}{b}[/tex] (đpcm)

8 tháng 10 2017

Chương I  : Số hữu tỉ. Số thực

29 tháng 7 2017

Trần Thọ Đạt ông giải dùm đi!Bn ý k bk tag nên tui tag dùm!

29 tháng 7 2017

Trần Thọ Đạt, giải giúp mình

26 tháng 12 2016

b^2=ac

b^2+2017bc=ac+2017bc

b(b+2017c)=c(a+2017b)

b/c=(a+2017b)/(b+2017c)

(b/c)^2=((a+2017b)/(b+2017c))^2

b^2/c^2=(a+2017b)^2/(b+2017c)^2

thế b^2=ac ta có 

ac/c^2=(a+2017b)^2/(b+2017c)^2 

a/c=(a+2017b)^2/(b+2017c)^2 

25 tháng 4 2018

tham khảo bài tương tự này :  

Câu hỏi của so yeoung cheing - Toán lớp 7 - Học toán với OnlineMath

23 tháng 11 2018

Ta có \(\frac{\left(a+2017b\right)^2}{(b+2017c)^2}=\frac{a^2+2017b^2}{ac+2017c^2}=\frac{a^2+2017ac}{ac+2017c^2}=\frac{a.\left(a+2017c\right)}{c.\left(a+2017c\right)}=\frac{a}{c}\)

=> ĐPCM

Học tốt

.............