Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)
Mà \(a+b=c+d=25\)
Nên \(\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)
Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)
\(\text{Ta co}:a+b=c+d=1000\text{ va }\frac{a}{c}=\frac{b}{d}\)
Áp dụng dãy tỉ số = nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{1000}{1000}=1\)
\(\Rightarrow MAX:\frac{a}{c}+\frac{b}{d}=1+1=2\)
a/b+c/d lớn nhất khi a/b và c/d lớn nhất.
Ta có: a/b lớn nhất khi b là số tự nhiên bé nhất, mà \(b\ne0\Rightarrow b=1\)
\(a+b=100\)
\(a+1=100\)
\(\Rightarrow a=100-1\)
\(\Rightarrow a=99\)
Tương tự như câu trên. Ta có:c/d lớn nhất khi d là số tự nhiên bé nhất, mà \(d\ne0\Rightarrow d=1\)
\(c+d=100\)
\(c+1=100\)
\(\Rightarrow c=100-1\)
\(\Rightarrow c=99\)
Lời giải:
Không mất tổng quát, giả sử $\frac{a}{c}\leq \frac{b}{d}\Rightarrow ad\leq bc$
$\Rightarrow \frac{a}{c}\leq \frac{a+b}{c+d}\leq \frac{b}{d}$
$\Leftrightarrow \frac{a}{c}\leq 1\leq \frac{b}{d}$
Nếu $b\leq 998$:
$d\geq 1\Rightarrow \frac{b}{d}\leq 998$. Kết hợp với $\frac{a}{c}\leq 1$ suy ra $P\leq 999(1)$
Nếu $b=999\Rightarrow a=1$
$P=\frac{1}{c}+\frac{999}{d}=\frac{1}{c}+\frac{999}{1000-c}$
$=\frac{1000+998c}{c(1000-c)}=\frac{1000+998c}{(c-1)(999-c)+999}$
Vì $1\leq c\leq 999\Rightarrow 10000+998c\leq 1000+998.999$
$(c-1)(999-c)+999\geq 999$
$\Rightarrow P\leq \frac{1000+998.999}{999}=999+\frac{1}{999}(2)$
Từ $(1);(2)\Rightarrow P_{\max}=999+\frac{1}{999}$ khi $a=d=1; b=c=999$
Không mất tính tổng quát, ta giả sử \(a\le b\le c\le d< 1\)
Xét tổng \(S=\left|d-c\right|+\left|d-b\right|+\left|d-a\right|+\left|c-b\right|+\left|c-a\right|+\left|b-a\right|\)
\(=\left(3d+c\right)-\left(b+3a\right)\)
Do \(b+3a\ge0\Rightarrow S\le3d+c\)
S = 3d + c khi a = b = 0 , khi đó d + c = 1.
Do \(d\le1\Rightarrow S=2d+\left(d+c\right)=2d+1\le2.1+1=3\)
Vậy maxS = 3 khi \(\left(a,b,c,d\right)=\left(1,0,0,0\right)\) và các hoán vị của nó.
Tìm hai số biết tổng là 0,75 và tỉ số cũng là 0,75
Tìm hai số biết tổng của
Giả sử abcd0
Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|
=> S = a – b + b – c + c – d + a – c + a – d + b – d
=> S = 3a + b – (c + 3d)
Mà c + 3d 0 => S3a + b
Mặt khác a + b + c + d = 1 => a 1.
Suy ra S = 3a + b = 2a + a + b 2.1 + 1 = 3
c+3d=0
Dấu bằng xảy ra khi a+b+c+d=1
} <=>{a=1b=c=d=0
a=1
Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng
Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)
Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)
Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)
Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)