K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(a+b=c+d=25\Rightarrow\frac{c}{b}=\frac{d}{a}\)(vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

5 tháng 3 2020

Vì \(\frac{c}{b}+\frac{d}{b}=\frac{c+d}{b+a}=1\)

Nên \(a+b=c+d=25=>\frac{c}{b}=\frac{d}{b}\)

Vậy \(M=\frac{c}{b}+\frac{d}{a}\le2\)

Dấu "=" xảy ra khi \(a=b=c=d=\frac{25}{2}\)

Vì \(\frac{c}{b}+\frac{d}{c}=\frac{c+d}{b+c}=1\)

Mà \(a+b=c+d=25\)

Nên \(\frac{c}{b}=\frac{d}{b}\)

Vậy \(M=\frac{c}{b}+\frac{d}{b}\le2\)

Dấu ''='' xảy ra khi \(a=b=c=d=\frac{25}{2}\)

21 tháng 4 2021

sai r bạn

28 tháng 3 2018

\(\text{Ta co}:a+b=c+d=1000\text{ va }\frac{a}{c}=\frac{b}{d}\)

Áp dụng dãy tỉ số = nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{1000}{1000}=1\)

\(\Rightarrow MAX:\frac{a}{c}+\frac{b}{d}=1+1=2\)

28 tháng 3 2018

mình đâu cho dữ liệu a/c = b/d

18 tháng 6 2016

a/b+c/d lớn nhất khi a/b và c/d lớn nhất. 

Ta có: a/b lớn nhất khi b là số tự nhiên bé nhất, mà \(b\ne0\Rightarrow b=1\)

                                                                           \(a+b=100\)      

                                                                           \(a+1=100\)

                                                                           \(\Rightarrow a=100-1\)

                                                                            \(\Rightarrow a=99\)

Tương tự như câu trên. Ta có:c/d lớn nhất khi d là số tự nhiên bé nhất, mà \(d\ne0\Rightarrow d=1\)

                                                                            \(c+d=100\)

                                                                            \(c+1=100\)

                                                                                \(\Rightarrow c=100-1\)

                                                                                \(\Rightarrow c=99\)

Lời giải:

Không mất tổng quát, giả sử $\frac{a}{c}\leq \frac{b}{d}\Rightarrow ad\leq bc$

$\Rightarrow \frac{a}{c}\leq \frac{a+b}{c+d}\leq \frac{b}{d}$

$\Leftrightarrow \frac{a}{c}\leq 1\leq \frac{b}{d}$

Nếu $b\leq 998$:

$d\geq 1\Rightarrow \frac{b}{d}\leq 998$. Kết hợp với $\frac{a}{c}\leq 1$ suy ra $P\leq 999(1)$

Nếu $b=999\Rightarrow a=1$

$P=\frac{1}{c}+\frac{999}{d}=\frac{1}{c}+\frac{999}{1000-c}$

$=\frac{1000+998c}{c(1000-c)}=\frac{1000+998c}{(c-1)(999-c)+999}$

Vì $1\leq c\leq 999\Rightarrow 10000+998c\leq 1000+998.999$

$(c-1)(999-c)+999\geq 999$

$\Rightarrow P\leq \frac{1000+998.999}{999}=999+\frac{1}{999}(2)$

Từ $(1);(2)\Rightarrow P_{\max}=999+\frac{1}{999}$ khi $a=d=1; b=c=999$

8 tháng 12 2017

Không mất tính tổng quát, ta giả sử \(a\le b\le c\le d< 1\)

Xét tổng \(S=\left|d-c\right|+\left|d-b\right|+\left|d-a\right|+\left|c-b\right|+\left|c-a\right|+\left|b-a\right|\)

\(=\left(3d+c\right)-\left(b+3a\right)\)

Do \(b+3a\ge0\Rightarrow S\le3d+c\)

S = 3d + c khi a = b = 0 , khi đó d + c = 1.

Do \(d\le1\Rightarrow S=2d+\left(d+c\right)=2d+1\le2.1+1=3\)

Vậy maxS = 3 khi \(\left(a,b,c,d\right)=\left(1,0,0,0\right)\) và các hoán vị của nó.

10 tháng 12 2017

Tìm hai số biết tổng là 0,75 và tỉ số cũng là 0,75
Tìm hai số biết tổng của

15 tháng 10 2015

Giả sử abcd0

Ta có S =|a-b|+|b-c|+|c-d|+|a-c|+|a-d|+|b-d|

=> S = a – b + b – c + c – d + a – c + a – d + b – d  

=> S = 3a + b – (c + 3d)

Mà c + 3d 0 => S3a + b

Mặt khác a + b + c + d = 1 => a  1.  

Suy ra S = 3a + b = 2a + a + b  2.1 + 1 = 3

              c+3d=0

Dấu bằng xảy ra khi a+b+c+d=1

                                                    } <=>{a=1b=c=d=0 

                                       a=1

Vậy S lớn nhất bằng 3 khi trong bốn số a, b, c, d có một số bằng 1 còn ba số bằng 

8 tháng 4 2016

tl rõ rõ cía