K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2022

Ta có:

a + b + c = 0

<=> a2 + b2 + c2 + 2(ab + bc + ac) = 0

<=> ab + bc + ac = -7

<=> a2b2 + b2c2 + a2c2  + 2abc(a + b + c) = 49

<=> a2b2 + b2c2 + a2c2 = 49 (vì a + b + c = 0)

<=> 2(a2b2 + b2c2 + a2c2) = 98

<=> (a2 + b2 + c2)2 = 98 + a4 + b4 + c4

<=> a4 + b4 + c4 = 142 - 98 = 98

21 tháng 9 2018

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0

18 tháng 7 2016

21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.

18 tháng 7 2016

23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)

Chia cả hai vế của đẳng thức trên với \(y^2>0\)được : 

\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)

\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)

Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :

\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)

20 tháng 11 2016

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Leftrightarrow14+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow ab+bc+ac=-7\Rightarrow\left(ab+bc+ac\right)^2=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc0=49\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+0=49\)\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)

Xét \(a^2+b^2+c^2=14\Rightarrow\left(a^2+b^2+c^2\right)^2=196\) 

\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=196\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)

\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)\(\Leftrightarrow a^4+b^4+c^4+98=196\)

\(\Leftrightarrow a^4+b^4+c^4=98\)

12 tháng 8 2020

\(\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\Leftrightarrow b-2\sqrt{bc}+c\ge0\Leftrightarrow b+c\ge2\sqrt{bc}\) dấu "="xảy ra khi b=c

\(\left(a+2b\right)\left(a+2c\right)=a^2+2a\left(b+c\right)+4bc\ge a^2+4a\sqrt{bc}+4bc=\left(a+2\sqrt{bc}\right)^2\)

\(\Rightarrow\sqrt{\left(a+2b\right)\left(a+2c\right)}\ge a+2\sqrt{bc}\)

tương tự ta có \(\hept{\begin{cases}\sqrt{\left(b+2c\right)\left(b+2c\right)}\ge b+2\sqrt{bc}\\\sqrt{\left(c+2a\right)\left(a+2b\right)}\ge c+2\sqrt{ab}\end{cases}}\)

dấu "=" xảy ra khi a=b=c

\(\Rightarrow A=\sqrt{\left(a+2b\right)\left(a+2c\right)}+\sqrt{\left(b+2a\right)\left(b+2c\right)}+\sqrt{\left(c+2a\right)\left(c+2b\right)}\)\(\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

hay \(A\ge\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(\sqrt{3}\right)^2=3\)

dấu "="xảy ra khi \(\hept{\begin{cases}a=b=c\\\sqrt{a}+\sqrt{b}+\sqrt{c}=3\end{cases}\Leftrightarrow a=b=c=\frac{\sqrt{3}}{3}}\)

\(M=\left(2\sqrt{a}+3\sqrt{b}-4\sqrt{c}\right)^2=\left(2\sqrt{a}+3\sqrt{a}-4\sqrt{a}\right)^2=\left(\sqrt{a}\right)^2=\frac{\sqrt{3}}{3}\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi
19 tháng 6 2023

a) Có:

 \(a+b+c=0\\\Leftrightarrow\left(a+b+c\right)^2=0\\ \Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\\ \Leftrightarrow2ab+2bc+2ca=-1\\ \Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\\ \Leftrightarrow\left(ab+bc+ca\right)^2=\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}-0=\dfrac{1}{4} \)

19 tháng 6 2023

câu (b) cho đa thức P (x) = cái gì?