K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2018

Theo T/C dãy tỉ số bằng nhau 

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)

Tương tự ta có 

\(b+c=2a\)

\(c+a=2b\)

Xét \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(\frac{a+b}{b}\right)\left(\frac{b+c}{c}\right)\left(\frac{c+a}{a}\right)\)

\(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a\cdot2b\cdot2c}{abc}=8\)

AH
Akai Haruma
Giáo viên
3 tháng 5 2018

Lời giải:
Ta có:

\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2013\)

\(\Leftrightarrow \frac{-(b-c)^2}{(a-b)(b-c)(c-a)}+\frac{-(c-a)^2}{(a-b)(b-c)(c-a)}+\frac{-(a-b)^2}{(a-b)(b-c)(c-a)}=2013\)

\(\Leftrightarrow \frac{-[(a-b)^2+(b-c)^2+(c-a)^2]}{(a-b)(b-c)(c-a)}=2013\)

\(\Rightarrow \frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}=-2013(*)\)

Lại có:

\(P=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)

\(=\frac{(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)}{(a-b)(b-c)(c-a)}\)

\(=\frac{bc-ba-c^2+ca+ca-bc-a^2+ab+ab-ac-b^2+bc}{(a-b)(b-c)(c-a)}\)

\(=\frac{ab+bc+ac-(a^2+b^2+c^2)}{(a-b)(b-c)(c-a)}=-\frac{1}{2}.\frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}\)

\(=\frac{-1}{2}.-2013=\frac{2013}{2}\) (theo $(*)$)

NV
26 tháng 12 2018

\(\dfrac{a+b-2c}{c}=\dfrac{c+a-2b}{b}=\dfrac{b+c-2a}{a}=\dfrac{a+b-2c+c+a-2b+b+c-2a}{c+b+a}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a+b-2c}{c}=0\\\dfrac{c+a-2b}{b}=0\\\dfrac{b+c-2a}{a}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-2c=0\\a+c-2b=0\\b+c-2a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}=\dfrac{2c.2a.2b}{abc}=\dfrac{8abc}{abc}=8\)

28 tháng 12 2018

Cảm ơn bạnhaha

27 tháng 12 2018

áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=1\)

\(\Rightarrow\dfrac{a+b-c}{c}=1\Leftrightarrow a+b-c=c\Leftrightarrow a+b=2c\)

\(\Rightarrow\dfrac{b+c-a}{a}=1\Leftrightarrow b+c-a=a\Leftrightarrow b+c=2a\)

ta có

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)=\dfrac{a+b}{a}\times\dfrac{c+a}{c}\times\dfrac{b+c}{b}=\dfrac{2c}{a}\times\dfrac{2b}{c}\times\dfrac{2a}{b}=8\)

\(\Rightarrow M=8\)

4 tháng 12 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)

\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)

\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)

5 tháng 12 2021

Cảm ơn bn.

10 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)

\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)

10 tháng 10 2021

\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)