K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có với a,b,c,d là các số thực khác 0 

\(\Rightarrow\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{b+c+d-a}{a}\)

\(\Rightarrow\frac{a-b+c+d}{b}+1=\frac{a+b-c+d}{c}+1=\frac{a+b+c-d}{d}+1=\frac{b+c+d-a}{a}+1\)

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\Rightarrow\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{a+b+c}{d}=\frac{b+c+d}{a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

Ta có M= \(\left(\frac{a+c+d}{b}\right)\left(\frac{a+b+d}{c}\right)\left(\frac{a+b+c}{d}\right)\left(\frac{b+c+d}{a}\right)\)

=> M= 3.3.3.3 

=> M =81

11 tháng 12 2017

Áp dụng TC cuae DTSBN ta có:

a-b+c+d/b = a+b-c+d/c = a+b+c-d/d = b+c+d-a/a = \(\frac{a-b+c+d+a+b-c+d+a+b+c-d+b+c+d-a}{b+c+d+a}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)

=> a-b+c+d/b = 3 => a-b+c+d = 3b => a+c+d = 4b

a+b-c+d/c = 3 => a+b-c+d = 3c => a+b+d = 4c

a+b+c-d/d = 3 => a+b+c-d = 3d => a+b+c = 4d

b+c+d-a/a = 3 => b+c+d-a = 3a => b+c+d = 4a

=> M = \(\frac{\left(a+b+c\right)\left(a+b+d\right)\left(b+c+d\right)\left(c+d+a\right)}{abcd}=\frac{4d.4c.4a.4b}{abcd}=\frac{256abcd}{abcd}=256\)

Vậy M = 256

12 tháng 3 2017

vì vai trò của a,b,c,d như nhau, giả sử \(a\ge b\ge c\ge d\)

áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{\left|a-b\right|}{2}=\dfrac{\left|b-c\right|}{23}=\dfrac{\left|c-d\right|}{32}=\dfrac{\left|d-a\right|}{223}\)

=\(\dfrac{a-b+b-c+c-d-\left(-d+a\right)}{-166}=0\)

\(\Rightarrow a+b=0\Rightarrow a=b\) (1)

\(b-c=0\Rightarrow b=c\) (2)

\(c-d=0\Rightarrow c=d\) (3)

từ (1),(2) và (3) suy ra: a=b=c=d

16 tháng 10 2017

4.a

\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)

17 tháng 10 2017

Thanks

17 tháng 3 2017

b)Ta có:

\(\left|x+\dfrac{1}{1.2}\right|\ge0,\left|x+\dfrac{1}{2.3}\right|\ge0,...,\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow\)\(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+...+\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow100x\ge0\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)\(\Rightarrow x+x+...+x+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}=100x\)\(\Rightarrow99x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{99}-\dfrac{1}{100}=100x\)\(\Rightarrow1-\dfrac{1}{100}=x\)

\(\Rightarrow x=\dfrac{99}{100}\)

24 tháng 7 2017

giúp mình với

11 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*)suy ra:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)\(=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)

b) Tương tự câu a nhé bạn!

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

11 tháng 6 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Xét vế trái , ta có :

(a + b + c + d)(a - b - c + d)

= (bk + b + dk + d)(bk - b - dk + d)

= [(b.(k + 1) + d(k + 1)].[b.(k - 1) - d.(k - 1)]

= (b + d)(k + 1).(b - d)(k - 1)

Xét vế phải , ta có :

(a - b + c - d)(a + b - c - d)

= (bk - b + dk - d)(bk + b - dk - d)

= [b.(k - 1) + d.(k - 1)].[b(k + 1) - d(k + 1)]

= (b + d)((k - 1).(b - d)(k + 1)

Ta thấy sau khi xét hai vế , đều có thừa số chung

Vậy ....

11 tháng 6 2017

Đoàn Đức Hiếu giúp mình