Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)
\(\Rightarrowđpcm\)
b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)
\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)
\(\Rightarrowđpcm\)
d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)
\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
e, Sai đề
f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)
\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)
Từ (1), (2) \(\Rightarrowđpcm\)
Câu 1:
Ta có: \(\left[\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{65.68}\right]x-\dfrac{7}{34}=\dfrac{19}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{65.68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\left[\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\right]x=\dfrac{33}{68}\)
\(\Rightarrow\dfrac{11}{68}x=\dfrac{33}{68}\)
\(\Rightarrow x=3\)
Vậy \(x=3.\)
Bài 1:
\(S=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)
\(=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)
\(=2007.\dfrac{1}{90}-3\)
\(=19,3\)
Vậy S = 19,3
5b)\(S=1+3+3^2+...+3^{2013}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{2014}\)
\(\Rightarrow3S-S=3^{2014}-1\)
\(\Rightarrow S=\dfrac{3^{2014}-1}{2}\)
Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)
\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)
\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)
\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)
\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)
Câu 2:
Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)
\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)
Nếu $a+b+c+d\neq 0$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)
\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)
Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)
\(\Rightarrow \frac{a+b}{c+d}=1\)
Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)
\(\Rightarrow M=1+1+1+1=4\)
Bài 1: Vì: 2x^3 - 1 = 15
=> 2x^3 = 16
=> x^3 = 8
=> x = 2 (1)
Ta có:
* (x + 16)/9 = (y - 25)/16
<=> (2 + 16)/9 = (y - 25)/16
<=> 18/9 = (y - 25)/16
<=> 2 = (y - 25)/16
<=> y - 25 = 16.2 = 32
=> y = 32+25 = 57 (2)
* (x + 16)/9 = (z + 9)/25
<=> (2 + 16)/9 = (z + 9)/25
<=> 2 = (z + 9)/25
<=> z + 9 = 25.2 = 50
=> z = 50 - 9 = 41 (3)
Từ (1), (2) và (3) => x + y + z = 2 + 57 + 41 = 100
Bài 2:
c) vì a,b,c là độ dài các cạnh của tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< 1\\\dfrac{b}{a+c}< 1\\\dfrac{c}{a+b}< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\\\dfrac{b}{a+c}< \dfrac{2b}{a+b+c}\\\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\end{matrix}\right.\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) (đpcm)
b)Ta có:
\(\left|x+\dfrac{1}{1.2}\right|\ge0,\left|x+\dfrac{1}{2.3}\right|\ge0,...,\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow\)\(\left|x+\dfrac{1}{1.2}\right|+\left|x+\dfrac{1}{2.3}\right|+...+\left|x+\dfrac{1}{99.100}\right|\ge0\)\(\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\dfrac{1}{1.2}+x+\dfrac{1}{2.3}+...+x+\dfrac{1}{99.100}=100x\)\(\Rightarrow x+x+...+x+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}=100x\)\(\Rightarrow99x+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+..+\dfrac{1}{99}-\dfrac{1}{100}=100x\)\(\Rightarrow1-\dfrac{1}{100}=x\)
\(\Rightarrow x=\dfrac{99}{100}\)