Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow M>\frac{x+y+z+t}{x+y+z+t}=1\)
Lại có :
\(x< x+y+z\Rightarrow\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
Tương tự, ta có
\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow M< \frac{2\times\left(x+y+z+t\right)}{x+y+z+t}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\)không là số tự nhiên
k cho mình nha nha nha
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
\(A=\frac{19}{5}xy^2.\left(x^3y\right)\left(-3x^{13}y^5\right)^0\)
\(A=\frac{19}{5}\left(x:x^3\right)\left(y^2.y\right).1\)
\(A=\frac{19}{5}.x^4y^3\)
Hệ số \(\frac{19}{5}\)
Bậc 7.
Do vì x = -1; y = 1
\(\Rightarrow A=\frac{19}{5}.1^4.2^3\)
\(\Rightarrow A=\frac{19.8}{5}=\frac{152}{5}\)
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x