\(P=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}\). Chứng tỏ rằn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

Đặt \(Q=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

Áp dụng tính chất \(\frac{a}{b}< \frac{a+m}{b+m}\left(a,b,m\inℕ^∗\right)\)ta có

\(\frac{1}{2}< \frac{1+1}{2+1}=\frac{2}{3}\)

\(\frac{2}{3}< \frac{2+1}{3+1}=\frac{3}{4}\)

...

\(\frac{399}{400}< \frac{399+1}{400+1}=\frac{400}{401}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

hay P < Q

=> \(P^2< P.Q\)

      \(P^2< \frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{399}{400}.\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{400}{401}\)

       \(P^2< \frac{1.2.3.4.....400}{2.3.4.5.....401}\)

        \(P^2< \frac{1}{401}< \frac{1}{400}< \left(\frac{1}{20}\right)^2\)

Vì P và 1/20 có cùng dấu

\(\Rightarrow P< \frac{1}{20}\)

16 tháng 3 2017

Bn lấy câu hỏi này ở đâu ?

13 tháng 7 2019

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)

\(3A=1-\frac{1}{64}\)

\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)

16 tháng 9 2017

\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)

\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)

\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)

\(=\frac{108}{188}\)

\(=\frac{27}{47}\)

16 tháng 9 2017

\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)

\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)

\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)

\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)

\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)

Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)

\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)

\(\Rightarrow24>y>10\)

\(\Rightarrow y\in\left\{11;12;...;23\right\}\)

11 tháng 8 2017

Bài 1:

Ta thấy:

\(\frac{1}{2}>\frac{1}{6};\frac{1}{3}>\frac{1}{6};\frac{1}{4}>\frac{1}{6};\frac{1}{5}>\frac{1}{6};\frac{1}{6}=\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}\)

\(=>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}>\frac{5}{6}\)

11 tháng 8 2017

Bài 2:

Đặt \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

Ta thấy \(\frac{1}{5}=\frac{1}{1.5};\frac{1}{45}=\frac{1}{5.9};\frac{1}{117}=\frac{1}{9.13}\)

Theo quy luật như vậy ta có các số tiếp theo là:

\(\frac{1}{13.17}=\frac{1}{221};\frac{1}{17.21}=\frac{1}{357};\frac{1}{21.25}=\frac{1}{525};\frac{1}{25.29}=\frac{1}{725};...\)

Ta có \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+...+\frac{1}{1517}\)

\(=>A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{27.31}\)

\(=>4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{27.31}\)

\(=>4A=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+...+\frac{31-27}{27.31}\)

\(=>4A=\frac{5}{1.5}-\frac{1}{1.5}+\frac{9}{5.9}-\frac{5}{5.9}+\frac{13}{9.13}-\frac{9}{9.13}+...+\frac{31}{27.31}-\frac{27}{27.31}\)

\(=>4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{27}-\frac{1}{31}\)

\(=>4A=1-\frac{1}{31}=\frac{30}{31}=>A=\frac{30}{31}.\frac{1}{4}=\frac{15}{62}\)

5 tháng 4 2019

=17/6+1/2×13/3-9/4:3/5

=17/6+13/6-9/4×5/3

=17/6+13/6-15/4

=68+52-90/24

=30/24

=5/4

5 tháng 4 2019

\(2\frac{5}{6}+0,5\times4\frac{1}{3}-2\frac{1}{4}:\frac{3}{5}\)

\(=\frac{17}{6}+\frac{1}{2}\times\frac{13}{3}-\frac{9}{4}:\frac{3}{5}\)

\(=\frac{17}{6}+\frac{13}{6}-\frac{9}{4}\times\frac{5}{3}\)

\(=5-\frac{9\times5}{4\times3}\)

\(=5-\frac{3\times5}{4\times1}\)

\(=5-\frac{15}{4}=\frac{20-15}{4}=\frac{5}{4}\)

25 tháng 7 2017

A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6

A = 5 / 6 = 1 / 2 + 1 / 3

Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )

          C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )

Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2

           C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 >  1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3

Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6

GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
 

Ta sẽ lấy 

\(1-\frac{1}{90}=\frac{89}{90}\)

Sau đó ta so sánh : 

\(\frac{89}{90}>\frac{5}{6}\)

k mình nhé !!!