Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 89 + 1 / 90 ... 5 / 6
A = 5 / 6 = 1 / 2 + 1 / 3
Ta đặt B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 ( 30 phân số )
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 ( 30 phân số )
Ta có : B = 1 / 31 + 1 / 32 + 1 / 33 + ... + 1 / 60 > 1 / 60 + 1 / 60 + 1 / 60 + ... + 1 / 60 = 30 . 1 / 60 = 1 / 2
C = 1 / 61 + 1 / 62 + 1 / 63 + ... + 1 / 90 > 1 / 90 + 1 / 90 + 1 / 90 + ... + 1 / 90 = 30 . 1 / 90 = 1 / 3
Vì A = B + C > 1 / 2 + 1 / 3 = 5 / 6 nên 1 / 31 + 1 / 32 + ... + 1 / 89 + 1 / 90 > 5 / 6
GIẢI VẦY MỚI GỌI LÀ GIẢI CHI TIẾT
Ta sẽ lấy
\(1-\frac{1}{90}=\frac{89}{90}\)
Sau đó ta so sánh :
\(\frac{89}{90}>\frac{5}{6}\)
k mình nhé !!!
Đặt \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)
\(B=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)
\(=>Q=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=A+B>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
Vậy \(Q>\frac{5}{6}\)
Ta có:1/31>1/32>1/33...>1/89>1/90 và 5/6>1/31.
Mà các số trên đều đều cộng dần có tử số là 1 và mẫu số là số tăng dần 1 đơn vị bắt đầu từ 31.
Cho nên khi cộng lại, đơn vị của các số cộng sẽ giảm dần.
\(\frac{1}{31}+\frac{1}{32}+...........+\frac{1}{89}+\frac{1}{90}>\frac{5}{6}\)
= 2 x ( 1/2 x 5 + 1/ 5 x 8 + 1/ 8 x 11 + 1/ 11 x 14 + 1/ 14 x 17 )
= 2 x ( 1/2 - 1/5 + 1/5 - 1/8 + ....+1/14 - 1/17)
= 2 x (1/2 - 1/17)
= 2 x 15/34
= 15/17
ĐÚNG THÌ TÍCH CHO MÌNH NHA
CHÚC BẠN HỌC GIỎI
Đặt \(A=\frac{2}{2.5}+\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+\frac{2}{14.17}\)
\(A=\frac{2}{3}\cdot\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}\right)\)
\(A=\frac{2}{3}\cdot\left(\frac{1}{2}-\frac{1}{17}\right)\)
\(A=\frac{2}{3}\cdot\frac{15}{34}=\frac{5}{17}\Rightarrow A< 1\)
Ta nhận thấy mẫu số của các phân số có qui luật 1x3; 2x4; 3x5; 4x6...... => mẫu số của phân số thứ 98 là 98x100
\(\Rightarrow A=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x\frac{36}{35}x...x\frac{9801}{9800}\)
\(A=\frac{2x2x3x3x4x4x5x5x6x6x...x99x99}{1x2x3x3x4x4x5x5x...x96x96x97x97x98x98x99x100}=\frac{2x99}{100}=\frac{99}{50}=1\frac{49}{50}\)
Đã trả lời ở đâu đó rồi (chi tiết)
-Nhận xét, phân tích bài toán:
So sánh với (5/6) =>rút gọn vế trái thành một phân số có mẫu số bằng 6
=> ta chọn số hạng có mẫu số là bội số của 6 để gom lại.
\(\frac{1}{31}+..+\frac{1}{36}>\frac{1}{36}+..+\frac{1}{36}=\frac{6}{36}=\frac{1}{6}\)
\(\frac{1}{37}+...+\frac{1}{42}>\frac{1}{42}+..+\frac{1}{42}=\frac{6}{42}=\frac{1}{7}\)
..........
\(\frac{1}{83}+..+\frac{1}{90}=\frac{1}{90}+...+\frac{1}{90}=\frac{6}{90}=\frac{1}{15}\)
Như vậy sau bước 1 rút vê trái về còn \(\frac{1}{6}+\frac{1}{7}...+\frac{1}{15}\)
Rút gọn tiếp vẫn theo cách trên
\(\frac{1}{7}+..+\frac{1}{12}>\frac{1}{12}+..+\frac{1}{12}=\frac{6}{12}=\frac{3}{6}\)
\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}>\frac{1}{18}+\frac{1}{18}+\frac{1}{18}=\frac{1}{6}\)
\(VT=\left(\frac{1}{31}+..+\frac{1}{90}\right)>\left(\frac{1}{6}+\frac{3}{6}+\frac{1}{6}\right)=\frac{5}{6}=VP\)