K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:
\((a^2+b^2)(x^2+y^2)=(ax+by)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Leftrightarrow (ay)^2-2(ay)(bx)+(bx)^2=0\)

\(\Leftrightarrow (ay-bx)^2=0\Rightarrow ay=bx\) (đpcm)

27 tháng 8 2019

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=x^2\left(a^2+b^2\right)+y^2\left(a^2+b^2\right)\)

\(=a^2x^2+b^2x^2+a^2y^2+b^2y^2\)

\(\left(ax+by\right)^2=a^2x^2+2abxy+b^2y^2\)

\(\Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2y^2+2abxy+b^2y^2\)

\(\Leftrightarrow a^2x^2+b^2x^2=2abxy\)

\(\Leftrightarrow a^2x^2+b^2x^2-2abxy=0\)

\(\Leftrightarrow\left(ax-bx\right)^2=0\)

\(\Leftrightarrow ax-bx=0\left(đpcm\right)\)

13 tháng 8 2017

bn post nhiều nên mình ghi đáp án thôi nhé phần nào sai đề mình cho qua

b)\(\left(x+1\right)\left(xy+1\right)\)

c)\(\left(a+b\right)\left(x+y\right)\)

d)\(\left(x-a\right)\left(x-b\right)\)

e)\(\left(x+y\right)\left(xy-1\right)\)

f)\(\left(a-b\right)\left(x^2+y\right)\)

10 tháng 9 2015

Ta có : (a^2 + b^2)(x^2 + y^2) = (ax + by)^2 

=> a^2x^2 + a^2y^2 +B^2x^2 + b^2y^2 = a^2x^2 + b^2y^2 + 2axby 

=> chuyển vế trái sang phải: a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 - a^2x^2 - b^2y^2 - 2axby = 0

=> a^2y^2 + b^2x^2 - 2axby = 0

=> (ax - by)^2 = 0

Chỉ khi ax = by thì (ax - by)^2 = 0 => ax = by. 

4 tháng 7 2015

Ta có:

(\(a^2+b^2\)).(.\(x^2+y^2\)) = \(a^2.\left(x^2+y^2\right)+b^2.\left(x^2+y^2\right)\)

<=>\(ax^2-ay^2+bx^2-by^2\)

<=>  \(\left(ax-by\right)^2+\left(ay+bx\right)^2\)

=> ĐPCM

 

4 tháng 7 2015

VT: ( ax - by) ^ 2+ (ay +bx)^ 2

= (ax)^2 - 2axby + (by)^2  +   (ay)^2+ 2aybx + (bx)^2

= (ax)^2 + (by)^2 + (ay)^2+ (bx)^2

= a^2 ( x^2 + y^2) + b^2 (x^2 + y^2)

= (a^2 +b^2) ( x^2+ b^2)  = VP   (dpcm)

12 tháng 10 2018

\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)

\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)

\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)

\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)

12 tháng 10 2018

\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)

\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)

21 tháng 7 2019

Ta có:

VT = (x2 + y2)(a2 + b2)

= x2a2 + x2b2 + y2a2 + y2b2

= (a2x2 + b2y2 + 2axby) + (a2y2 - 2aybx + b2x2)

= (ax + by)2 + (ay - bx)2

=> VT = VP => đpcm