Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (a^2 + b^2)(x^2 + y^2) = (ax + by)^2
=> a^2x^2 + a^2y^2 +B^2x^2 + b^2y^2 = a^2x^2 + b^2y^2 + 2axby
=> chuyển vế trái sang phải: a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 - a^2x^2 - b^2y^2 - 2axby = 0
=> a^2y^2 + b^2x^2 - 2axby = 0
=> (ax - by)^2 = 0
Chỉ khi ax = by thì (ax - by)^2 = 0 => ax = by.
\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)
\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)
(Tay trái bên) - và sau đó cố gắng để tính toán (bên phải) trong thời gian này. (Tay trái bên) - (bên phải) = A ^ 2 X ^ 2 Tasu A ^ 2 Y ^ 2 Tasu B ^ 2 X ^ 2 Tasu B ^ 2 Y ^ 2 - (A ^ 2 X ^ 2 Tasu 2Abxy Tasu B ^ 2 Y 2 ^) = a ^ 2 Y ^ 2 - 2Abxy Tasu B ^ 2 X ^ 2 = (Ay - bx) ^ 2 ≧ 0 dấu bằng, ay-bx = 0, có nghĩa là hài lòng khi ay = bx.
Đúng thì mình lớp 5 ít khả năng đúng
a) bạn ktra lại đề
b) \(x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
c) \(ax+by+ay+bx=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
d) \(x^2-\left(a+b\right)x+ab=x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-a\right)\left(x-b\right)\)
e) \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
f) \(ax ^2+ay-bx^2-by=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
\(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(xy+1\right)\)
hk tốt
^^