Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+b^4+a^2b^2+2a^2b^2+2ab^3+2a^3b\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4ab^3+4a^3b\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2\right)^2+\left(b^2\right)^2+\left(2ab\right)^2+2a^2b^2+2b^2.2ab+2.2ab.a^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left(a^2+b^2+2ab\right)^2\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
Ta có :
\(x^2=a^2+b^2+ab\)
\(\Leftrightarrow x^4=a^4+3a^2b^2+2a^3b+2ab^3+b^4\)
\(\Leftrightarrow2x^4=2a^4+2b^4+6a^2b^2+4a^3b+4ab^3\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a^2+2ab+b^2\right)^2\right]\)
\(\Leftrightarrow2x^4=a^4+b^4+\left[\left(a+b\right)^2\right]^2\)
\(\Leftrightarrow2x^4=a^4+b^4+c^4\left(đpcm\right)\)
a4 + b4 + c4 = (a2 + b2)2 - 2.a2 .b2 + (a+ b)4 = (x2)2 - 2a2.b2 + (a2 + b2 + 2ab)2
= x4 - 2a2b2 + (a2 + b2)2 + 4a2b2 + 4ab.(a2 + b2) = x4 + x4 + 2a2.b2 + 4ab.x2 = 2x4 + 4x2.ab + 2(ab)2
= 2. (x4 + 2x2.ab + (ab)2) = 2. (x2 + ab)2
Vậy a4 + b4 + c4 = 2.(x2 + ab)2. Em xem lại đề bài nhé
Bn có thể tham khảo link này:
https://olm.vn/hoi-dap/detail/9056136271.html
#Hok_tốt
\(\left\{\begin{matrix}2x^2=a^2+b^2+c^2\left(1\right)\\a+b=c\left(2\right)\end{matrix}\right.\)
(1)=>\(4x^4=\left(a^4+b^4+c^4\right)+2\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]\)(3)
\(A=2\left(ac\right)^2+2\left(ab\right)^2+2\left(bc\right)^2=a^2\left(b^2+c^2\right)+c^2\left(a^2+b^2\right)+b^2\left(a^2+c^2\right)\) (*)
(2)=> \(\left\{\begin{matrix}a^2+b^2=c^2-2ab\\a^2+c^2=b^2+2ac\\b^2+c^2=a^2-2bc\\\end{matrix}\right.\)(4)
Thay (4) vào (*)
\(A=a^2\left(a^2+2bc\right)+c^2\left(c^2-2ab\right)+b^2\left(b^2+2ac\right)=a^4+2a^2bc+c^4-2abc^2+b^4+2ab^2c64\\ \)
\(A=\left(a^4+b^4+c^4\right)+2abc\left(a-c+b\right)=\left(a^4+b^4+c^4\right)+2abc.0=\left(a^4+b^4+c^4\right)\)(3)\(\Leftrightarrow4x^4=\left(a^4+b^4+c^4\right)+\left(a^4+b^4+c^4\right)=2\left(a^4+b^4+c^4\right)\)
\(\Rightarrow2x^4=\left(a^4+b^4+c^4\right)\) => dpcm